Cargando…
Detection of Important Scenes in Baseball Videos via a Time-Lag-Aware Multimodal Variational Autoencoder †
A new method for the detection of important scenes in baseball videos via a time-lag-aware multimodal variational autoencoder (Tl-MVAE) is presented in this paper. Tl-MVAE estimates latent features calculated from tweet, video, and audio features extracted from tweets and videos. Then, important sce...
Autores principales: | Hirasawa, Kaito, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999231/ https://www.ncbi.nlm.nih.gov/pubmed/33799412 http://dx.doi.org/10.3390/s21062045 |
Ejemplares similares
-
Time-Lag Aware Latent Variable Model for Prediction of Important Scenes Using Baseball Videos and Tweets
por: Hirasawa, Kaito, et al.
Publicado: (2022) -
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
por: Ogawa, Naoki, et al.
Publicado: (2022) -
Prediction of Shooting Events in Soccer Videos Using Complete Bipartite Graphs and Players’ Spatial-Temporal Relations
por: Goka, Ryota, et al.
Publicado: (2023) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Few-Shot Personalized Saliency Prediction Based on Adaptive Image Selection Considering Object and Visual Attention†
por: Moroto, Yuya, et al.
Publicado: (2020)