Cargando…
A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999273/ https://www.ncbi.nlm.nih.gov/pubmed/33804103 http://dx.doi.org/10.3390/metabo11030168 |
_version_ | 1783670744269455360 |
---|---|
author | Hendry, John I. Dinh, Hoang V. Sarkar, Debolina Wang, Lin Bandyopadhyay, Anindita Pakrasi, Himadri B. Maranas, Costas D. |
author_facet | Hendry, John I. Dinh, Hoang V. Sarkar, Debolina Wang, Lin Bandyopadhyay, Anindita Pakrasi, Himadri B. Maranas, Costas D. |
author_sort | Hendry, John I. |
collection | PubMed |
description | Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N(2) fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors. |
format | Online Article Text |
id | pubmed-7999273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79992732021-03-28 A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers Hendry, John I. Dinh, Hoang V. Sarkar, Debolina Wang, Lin Bandyopadhyay, Anindita Pakrasi, Himadri B. Maranas, Costas D. Metabolites Article Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N(2) fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors. MDPI 2021-03-15 /pmc/articles/PMC7999273/ /pubmed/33804103 http://dx.doi.org/10.3390/metabo11030168 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Hendry, John I. Dinh, Hoang V. Sarkar, Debolina Wang, Lin Bandyopadhyay, Anindita Pakrasi, Himadri B. Maranas, Costas D. A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers |
title | A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers |
title_full | A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers |
title_fullStr | A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers |
title_full_unstemmed | A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers |
title_short | A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers |
title_sort | genome-scale metabolic model of anabaena 33047 to guide genetic modifications to overproduce nylon monomers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999273/ https://www.ncbi.nlm.nih.gov/pubmed/33804103 http://dx.doi.org/10.3390/metabo11030168 |
work_keys_str_mv | AT hendryjohni agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT dinhhoangv agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT sarkardebolina agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT wanglin agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT bandyopadhyayanindita agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT pakrasihimadrib agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT maranascostasd agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT hendryjohni genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT dinhhoangv genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT sarkardebolina genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT wanglin genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT bandyopadhyayanindita genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT pakrasihimadrib genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers AT maranascostasd genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers |