Cargando…

A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers

Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h...

Descripción completa

Detalles Bibliográficos
Autores principales: Hendry, John I., Dinh, Hoang V., Sarkar, Debolina, Wang, Lin, Bandyopadhyay, Anindita, Pakrasi, Himadri B., Maranas, Costas D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999273/
https://www.ncbi.nlm.nih.gov/pubmed/33804103
http://dx.doi.org/10.3390/metabo11030168
_version_ 1783670744269455360
author Hendry, John I.
Dinh, Hoang V.
Sarkar, Debolina
Wang, Lin
Bandyopadhyay, Anindita
Pakrasi, Himadri B.
Maranas, Costas D.
author_facet Hendry, John I.
Dinh, Hoang V.
Sarkar, Debolina
Wang, Lin
Bandyopadhyay, Anindita
Pakrasi, Himadri B.
Maranas, Costas D.
author_sort Hendry, John I.
collection PubMed
description Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N(2) fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.
format Online
Article
Text
id pubmed-7999273
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79992732021-03-28 A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers Hendry, John I. Dinh, Hoang V. Sarkar, Debolina Wang, Lin Bandyopadhyay, Anindita Pakrasi, Himadri B. Maranas, Costas D. Metabolites Article Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N(2) fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors. MDPI 2021-03-15 /pmc/articles/PMC7999273/ /pubmed/33804103 http://dx.doi.org/10.3390/metabo11030168 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Hendry, John I.
Dinh, Hoang V.
Sarkar, Debolina
Wang, Lin
Bandyopadhyay, Anindita
Pakrasi, Himadri B.
Maranas, Costas D.
A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
title A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
title_full A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
title_fullStr A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
title_full_unstemmed A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
title_short A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers
title_sort genome-scale metabolic model of anabaena 33047 to guide genetic modifications to overproduce nylon monomers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999273/
https://www.ncbi.nlm.nih.gov/pubmed/33804103
http://dx.doi.org/10.3390/metabo11030168
work_keys_str_mv AT hendryjohni agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT dinhhoangv agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT sarkardebolina agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT wanglin agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT bandyopadhyayanindita agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT pakrasihimadrib agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT maranascostasd agenomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT hendryjohni genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT dinhhoangv genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT sarkardebolina genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT wanglin genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT bandyopadhyayanindita genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT pakrasihimadrib genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers
AT maranascostasd genomescalemetabolicmodelofanabaena33047toguidegeneticmodificationstooverproducenylonmonomers