Cargando…

Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data

Electroencephalography/Magnetoencephalography (EEG/MEG) source localization involves the estimation of neural activity inside the brain volume that underlies the EEG/MEG measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture model for source reconstructio...

Descripción completa

Detalles Bibliográficos
Autores principales: Opoku, Eugene A., Ahmed, Syed Ejaz, Song, Yin, Nathoo, Farouk S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999289/
https://www.ncbi.nlm.nih.gov/pubmed/33799662
http://dx.doi.org/10.3390/e23030329
_version_ 1783670747998191616
author Opoku, Eugene A.
Ahmed, Syed Ejaz
Song, Yin
Nathoo, Farouk S.
author_facet Opoku, Eugene A.
Ahmed, Syed Ejaz
Song, Yin
Nathoo, Farouk S.
author_sort Opoku, Eugene A.
collection PubMed
description Electroencephalography/Magnetoencephalography (EEG/MEG) source localization involves the estimation of neural activity inside the brain volume that underlies the EEG/MEG measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture model for source reconstruction and implement Ant Colony System (ACS) optimization coupled with Iterated Conditional Modes (ICM) for computing estimates of the neural source activity. Our approach is evaluated using simulation studies and a real data application in which we implement a nonparametric bootstrap for interval estimation. We demonstrate improved performance of the ACS-ICM algorithm as compared to existing methodology for the same spatiotemporal model.
format Online
Article
Text
id pubmed-7999289
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79992892021-03-28 Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data Opoku, Eugene A. Ahmed, Syed Ejaz Song, Yin Nathoo, Farouk S. Entropy (Basel) Article Electroencephalography/Magnetoencephalography (EEG/MEG) source localization involves the estimation of neural activity inside the brain volume that underlies the EEG/MEG measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture model for source reconstruction and implement Ant Colony System (ACS) optimization coupled with Iterated Conditional Modes (ICM) for computing estimates of the neural source activity. Our approach is evaluated using simulation studies and a real data application in which we implement a nonparametric bootstrap for interval estimation. We demonstrate improved performance of the ACS-ICM algorithm as compared to existing methodology for the same spatiotemporal model. MDPI 2021-03-11 /pmc/articles/PMC7999289/ /pubmed/33799662 http://dx.doi.org/10.3390/e23030329 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Opoku, Eugene A.
Ahmed, Syed Ejaz
Song, Yin
Nathoo, Farouk S.
Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
title Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
title_full Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
title_fullStr Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
title_full_unstemmed Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
title_short Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
title_sort ant colony system optimization for spatiotemporal modelling of combined eeg and meg data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999289/
https://www.ncbi.nlm.nih.gov/pubmed/33799662
http://dx.doi.org/10.3390/e23030329
work_keys_str_mv AT opokueugenea antcolonysystemoptimizationforspatiotemporalmodellingofcombinedeegandmegdata
AT ahmedsyedejaz antcolonysystemoptimizationforspatiotemporalmodellingofcombinedeegandmegdata
AT songyin antcolonysystemoptimizationforspatiotemporalmodellingofcombinedeegandmegdata
AT nathoofarouks antcolonysystemoptimizationforspatiotemporalmodellingofcombinedeegandmegdata