Cargando…
Edge-Enhanced with Feedback Attention Network for Image Super-Resolution
Significant progress has been made in single image super-resolution (SISR) based on deep convolutional neural networks (CNNs). The attention mechanism can capture important features well, and the feedback mechanism can realize the fine-tuning of the output to the input. However, they have not been r...
Autores principales: | Fu, Chunmei, Yin, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999349/ https://www.ncbi.nlm.nih.gov/pubmed/33804241 http://dx.doi.org/10.3390/s21062064 |
Ejemplares similares
-
FNSAM: Image super-resolution using a feedback network with self-attention mechanism
por: Huang, Yu, et al.
Publicado: (2023) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
por: Hou, Zhongwei, et al.
Publicado: (2023) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022)