Cargando…
Solvable Model for the Linear Separability of Structured Data
Linear separability, a core concept in supervised machine learning, refers to whether the labels of a data set can be captured by the simplest possible machine: a linear classifier. In order to quantify linear separability beyond this single bit of information, one needs models of data structure par...
Autor principal: | Gherardi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999416/ https://www.ncbi.nlm.nih.gov/pubmed/33806454 http://dx.doi.org/10.3390/e23030305 |
Ejemplares similares
-
Solvability of the Non-Linearly Viscous Polymer Solutions Motion Model
por: Zvyagin, Andrey
Publicado: (2022) -
An Analytically Solvable Model for Rapid Evolution of Modular
Structure
por: Kashtan, Nadav, et al.
Publicado: (2009) -
Solvable models in quantum mechanics
por: Albeverio, Sergio A, et al.
Publicado: (1988) -
Solvable models in quantum mechanics
por: Albeverio, S, et al.
Publicado: (2004) -
On the solvability of urban complexity
por: Lai, Shih-Kung
Publicado: (2020)