Cargando…
Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review
There are numerous risk factors for stress fractures that have been identified in literature. Among different risk factors, a prolonged lack of vitamin D (25(OH)D) can lead to stress fractures in athletes since 25(OH)D insufficiency is associated with an increased incidence of a fracture. A 25(OH)D...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999420/ https://www.ncbi.nlm.nih.gov/pubmed/33804459 http://dx.doi.org/10.3390/medicina57030223 |
Sumario: | There are numerous risk factors for stress fractures that have been identified in literature. Among different risk factors, a prolonged lack of vitamin D (25(OH)D) can lead to stress fractures in athletes since 25(OH)D insufficiency is associated with an increased incidence of a fracture. A 25(OH)D value of <75.8 nmol/L is a risk factor for a stress fracture. 25(OH)D deficiency is, however, only one of several potential risk factors. Well-documented risk factors for a stress fracture include female sex, white ethnicity, older age, taller stature, lower aerobic fitness, prior physical inactivity, greater amounts of current physical training, thinner bones, 25(OH)D deficiency, iron deficiency, menstrual disturbances, and inadequate intake of 25(OH)D and/or calcium. Stress fractures are not uncommon in athletes and affect around 20% of all competitors. Most athletes with a stress fracture are under 25 years of age. Stress fractures can affect every sporty person, from weekend athletes to top athletes. Stress fractures are common in certain sports disciplines such as basketball, baseball, athletics, rowing, soccer, aerobics, and classical ballet. The lower extremity is increasingly affected for stress fractures with the locations of the tibia, metatarsalia and pelvis. Regarding prevention and therapy, 25(OH)D seems to play an important role. Athletes should have an evaluation of 25(OH)D -dependent calcium homeostasis based on laboratory tests of 25-OH-D(3), calcium, creatinine, and parathyroid hormone. In case of a deficiency of 25(OH)D, normal blood levels of ≥30 ng/mL may be restored by optimizing the athlete’s lifestyle and, if appropriate, an oral substitution of 25(OH)D. Very recent studies suggested that the prevalence of stress fractures decreased when athletes are supplemented daily with 800 IU 25(OH)D and 2000 mg calcium. Recommendations of daily 25(OH)D intake may go up to 2000 IU of 25(OH)D per day. |
---|