Cargando…
Predicting Fraud Victimization Using Classical Machine Learning
Protecting financial consumers from investment fraud has been a recurring problem in Canada. The purpose of this paper is to predict the demographic characteristics of investors who are likely to be victims of investment fraud. Data for this paper came from the Investment Industry Regulatory Organiz...
Autores principales: | Lokanan, Mark, Liu, Susan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999579/ https://www.ncbi.nlm.nih.gov/pubmed/33802314 http://dx.doi.org/10.3390/e23030300 |
Ejemplares similares
-
The determinants of investment fraud: A machine learning and artificial intelligence approach
por: Lokanan, Mark
Publicado: (2022) -
In their own words: deception detection by victims and near victims of fraud
por: Junger, Marianne, et al.
Publicado: (2023) -
The role of social-psychological factors of victimity on victimization of online fraud in China
por: Zhang, Zhi, et al.
Publicado: (2022) -
Financial frauds’ victim profiles in developing countries
por: Bar Lev, Eldad, et al.
Publicado: (2022) -
What is a capable guardian to older fraud victims? Comparison of younger and older victims’ characteristics of online fraud utilizing routine activity theory
por: Parti, Katalin
Publicado: (2023)