Cargando…
Identifying Fall Risk Predictors by Monitoring Daily Activities at Home Using a Depth Sensor Coupled to Machine Learning Algorithms
Because of population ageing, fall prevention represents a human, economic, and social issue. Currently, fall-risk is assessed infrequently, and usually only after the first fall occurrence. Home monitoring could improve fall prevention. Our aim was to monitor daily activities at home in order to id...
Autores principales: | Dubois, Amandine, Bihl, Titus, Bresciani, Jean-Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999588/ https://www.ncbi.nlm.nih.gov/pubmed/33799526 http://dx.doi.org/10.3390/s21061957 |
Ejemplares similares
-
Fast and automatic assessment of fall risk by coupling machine learning algorithms with a depth camera to monitor simple balance tasks
por: Dubois, Amandine, et al.
Publicado: (2019) -
Automating the Timed Up and Go Test Using a Depth Camera
por: Dubois, Amandine, et al.
Publicado: (2017) -
Home‐based monitoring of falls using wearable sensors in Parkinson's disease
por: Silva de Lima, Ana Lígia, et al.
Publicado: (2019) -
Feature Selection and Predictors of Falls with Foot Force Sensors Using KNN-Based Algorithms
por: Liang, Shengyun, et al.
Publicado: (2015) -
In-Home Older Adults’ Activity Pattern Monitoring Using Depth Sensors: A Review
por: Momin, Md Sarfaraz, et al.
Publicado: (2022)