Cargando…
A Novel Machine Learning Strategy for the Prediction of Antihypertensive Peptides Derived from Food with High Efficiency
Strategies to screen antihypertensive peptides with high throughput and rapid speed will doubtlessly contribute to the treatment of hypertension. Food-derived antihypertensive peptides can reduce blood pressure without side effects. In the present study, a novel model based on the eXtreme Gradient B...
Autores principales: | Wang, Liyang, Niu, Dantong, Wang, Xiaoya, Khan, Jabir, Shen, Qun, Xue, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999667/ https://www.ncbi.nlm.nih.gov/pubmed/33800877 http://dx.doi.org/10.3390/foods10030550 |
Ejemplares similares
-
A Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to Predict the Allergenicity of Food Proteins
por: Wang, Liyang, et al.
Publicado: (2021) -
A Novel LSTM-Based Machine Learning Model for Predicting the Activity of Food Protein-Derived Antihypertensive Peptides
por: Liao, Wang, et al.
Publicado: (2023) -
Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides
por: Okagu, Innocent U., et al.
Publicado: (2022) -
Food Peptides, Gut Microbiota Modulation, and Antihypertensive Effects
por: Tsafack, Patrick Blondin, et al.
Publicado: (2022) -
Novel Antihypertensive Peptides Derived from Chicken Foot Proteins
por: Bravo, Francisca I., et al.
Publicado: (2019)