Cargando…

How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly

Most patients with hydrocephalus are still managed with the implantation of a cerebrospinal fluid (CSF) shunt in which the CSF flow is regulated by a differential-pressure valve (DPV). Our aim in this review is to discuss some basic concepts in fluid mechanics that are frequently ignored but that sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahuquillo, Juan, Rosas, Katiuska, Calvo, Helena, Alcina, Aloma, Gándara, Dario, López-Bermeo, Diego, Poca, Maria-Antonia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999679/
https://www.ncbi.nlm.nih.gov/pubmed/33803977
http://dx.doi.org/10.3390/jcm10061210
Descripción
Sumario:Most patients with hydrocephalus are still managed with the implantation of a cerebrospinal fluid (CSF) shunt in which the CSF flow is regulated by a differential-pressure valve (DPV). Our aim in this review is to discuss some basic concepts in fluid mechanics that are frequently ignored but that should be understood by neurosurgeons to enable them to choose the most adequate shunt for each patient. We will present data, some of which is not provided by manufacturers, which may help neurosurgeons in selecting the most appropriate shunt. To do so, we focused on the management of patients with idiopathic “normal-pressure hydrocephalus” (iNPH), as one of the most challenging scenarios, in which the combination of optimal technology, patient characteristics, and knowledge of fluid mechanics can significantly modify the surgical results. For a better understanding of the available hardware and its evolution over time, we will have a second look at the design of the first DPV and the reasons why additional devices were incorporated to control for shunt overdrainage and its related complications. We try to persuade the reader that a clear understanding of the physical concepts of the CSF and shunt dynamics is key to understand the pathophysiology of iNPH and to improve its treatment.