Cargando…

Chimeric VLPs Based on HIV-1 Gag and a Fusion Rabies Glycoprotein Induce Specific Antibodies against Rabies and Foot-and-Mouth Disease Virus

Foot and mouth disease is a livestock acute disease, causing economic losses in affected areas. Currently, control of this disease is performed by mandatory vaccination campaigns using inactivated viral vaccines. In this work, we describe the development of a chimeric VLP-based vaccine candidate for...

Descripción completa

Detalles Bibliográficos
Autores principales: Fontana, Diego, Garay, Ernesto, Cervera, Laura, Kratje, Ricardo, Prieto, Claudio, Gòdia, Francesc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999769/
https://www.ncbi.nlm.nih.gov/pubmed/33809060
http://dx.doi.org/10.3390/vaccines9030251
Descripción
Sumario:Foot and mouth disease is a livestock acute disease, causing economic losses in affected areas. Currently, control of this disease is performed by mandatory vaccination campaigns using inactivated viral vaccines. In this work, we describe the development of a chimeric VLP-based vaccine candidate for foot-and-mouth disease virus (FMDV), based on the co-expression of the HIV-1 Gag protein and a novel fusion rabies glycoprotein (RVG), which carries in its N-term the FMDV main antigen: the G-H loop. It is demonstrated by confocal microscopy that both Gag-GFP polyprotein and the G-H loop colocalize at the cell membrane and, that the Gag polyprotein of the HIV virus acts as a scaffold for enveloped VLPs that during the budding process acquires the proteins that are being expressed in the cell membrane. The obtained VLPs were spherical particles of 130 ± 40 nm in diameter (analyzed by TEM, Cryo-TEM and NTA) carrying an envelope membrane that efficiently display the GH-RVG on its surface (analyzed by gold immunolabeling). Immunostainings with a FMDV hyperimmune serum showed that the heterologous antigenic site, genetically fused to RVG, is recognized by specific G-H loop antibodies. Additionally, the cVLPs produced expose the G-H loop to the liquid surrounding (analyzed by specific ELISA). Finally, we confirmed that these FMD cVLPs are able to induce a specific humoral immune response, based on antibodies directed to the G-H loop in experimental animals.