Cargando…
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
Segmentation of skin lesions is a challenging task because of the wide range of skin lesion shapes, sizes, colors, and texture types. In the past few years, deep learning networks such as U-Net have been successfully applied to medical image segmentation and exhibited faster and more accurate perfor...
Autores principales: | Tong, Xiaozhong, Wei, Junyu, Sun, Bei, Su, Shaojing, Zuo, Zhen, Wu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999819/ https://www.ncbi.nlm.nih.gov/pubmed/33809048 http://dx.doi.org/10.3390/diagnostics11030501 |
Ejemplares similares
-
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
Anti-Aliasing Attention U-net Model for Skin Lesion Segmentation
por: Le, Phuong Thi, et al.
Publicado: (2023) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
por: Pennisi, Andrea, et al.
Publicado: (2022) -
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
por: Liu, Congjun, et al.
Publicado: (2022)