Cargando…
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators
Motor imaging (MI) induces recovery and neuroplasticity in neurophysical regulation. However, a non-negligible portion of users presents insufficient coordination skills of sensorimotor cortex control. Assessments of the relationship between wakefulness and tasks states are conducted to foster neuro...
Autores principales: | Caicedo-Acosta, Julian, Castaño, German A., Acosta-Medina, Carlos, Alvarez-Meza, Andres, Castellanos-Dominguez, German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999933/ https://www.ncbi.nlm.nih.gov/pubmed/33801817 http://dx.doi.org/10.3390/s21061932 |
Ejemplares similares
-
Regression Networks for Neurophysiological Indicator Evaluation in Practicing Motor Imagery Tasks
por: Velasquez-Martinez, Luisa, et al.
Publicado: (2020) -
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity
por: Collazos-Huertas, Diego Fabian, et al.
Publicado: (2023) -
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2023) -
Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills
por: Tobón-Henao, Mateo, et al.
Publicado: (2022) -
Entropy-Based Estimation of Event-Related De/Synchronization in Motor Imagery Using Vector-Quantized Patterns
por: Velasquez-Martinez, Luisa, et al.
Publicado: (2020)