Cargando…
Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999948/ https://www.ncbi.nlm.nih.gov/pubmed/33674422 http://dx.doi.org/10.1073/pnas.2019893118 |
_version_ | 1783670897322754048 |
---|---|
author | Mendels, David-A. Dortet, Laurent Emeraud, Cécile Oueslati, Saoussen Girlich, Delphine Ronat, Jean-Baptiste Bernabeu, Sandrine Bahi, Silvestre Atkinson, Gary J. H. Naas, Thierry |
author_facet | Mendels, David-A. Dortet, Laurent Emeraud, Cécile Oueslati, Saoussen Girlich, Delphine Ronat, Jean-Baptiste Bernabeu, Sandrine Bahi, Silvestre Atkinson, Gary J. H. Naas, Thierry |
author_sort | Mendels, David-A. |
collection | PubMed |
description | Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these seemingly easy-to-read tests can be highly subjective, and interpretations of the visible “bands” of color that appear (or not) in a test window may vary between users, test models, and brands. We developed and evaluated the accuracy/performance of a smartphone application (xRCovid) that uses machine learning to classify SARS-CoV-2 serological RDT results and reduce reading ambiguities. Across 11 COVID-19 RDT models, the app yielded 99.3% precision compared to reading by eye. Using the app replaces the uncertainty from visual RDT interpretation with a smaller uncertainty of the image classifier, thereby increasing confidence of clinicians and laboratory staff when using RDTs, and creating opportunities for patient self-testing. |
format | Online Article Text |
id | pubmed-7999948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-79999482021-04-01 Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation Mendels, David-A. Dortet, Laurent Emeraud, Cécile Oueslati, Saoussen Girlich, Delphine Ronat, Jean-Baptiste Bernabeu, Sandrine Bahi, Silvestre Atkinson, Gary J. H. Naas, Thierry Proc Natl Acad Sci U S A Biological Sciences Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these seemingly easy-to-read tests can be highly subjective, and interpretations of the visible “bands” of color that appear (or not) in a test window may vary between users, test models, and brands. We developed and evaluated the accuracy/performance of a smartphone application (xRCovid) that uses machine learning to classify SARS-CoV-2 serological RDT results and reduce reading ambiguities. Across 11 COVID-19 RDT models, the app yielded 99.3% precision compared to reading by eye. Using the app replaces the uncertainty from visual RDT interpretation with a smaller uncertainty of the image classifier, thereby increasing confidence of clinicians and laboratory staff when using RDTs, and creating opportunities for patient self-testing. National Academy of Sciences 2021-03-23 2021-03-05 /pmc/articles/PMC7999948/ /pubmed/33674422 http://dx.doi.org/10.1073/pnas.2019893118 Text en Copyright © 2021 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Mendels, David-A. Dortet, Laurent Emeraud, Cécile Oueslati, Saoussen Girlich, Delphine Ronat, Jean-Baptiste Bernabeu, Sandrine Bahi, Silvestre Atkinson, Gary J. H. Naas, Thierry Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation |
title | Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation |
title_full | Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation |
title_fullStr | Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation |
title_full_unstemmed | Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation |
title_short | Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation |
title_sort | using artificial intelligence to improve covid-19 rapid diagnostic test result interpretation |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999948/ https://www.ncbi.nlm.nih.gov/pubmed/33674422 http://dx.doi.org/10.1073/pnas.2019893118 |
work_keys_str_mv | AT mendelsdavida usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT dortetlaurent usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT emeraudcecile usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT oueslatisaoussen usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT girlichdelphine usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT ronatjeanbaptiste usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT bernabeusandrine usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT bahisilvestre usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT atkinsongaryjh usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation AT naasthierry usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation |