Cargando…

Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation

Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendels, David-A., Dortet, Laurent, Emeraud, Cécile, Oueslati, Saoussen, Girlich, Delphine, Ronat, Jean-Baptiste, Bernabeu, Sandrine, Bahi, Silvestre, Atkinson, Gary J. H., Naas, Thierry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999948/
https://www.ncbi.nlm.nih.gov/pubmed/33674422
http://dx.doi.org/10.1073/pnas.2019893118
_version_ 1783670897322754048
author Mendels, David-A.
Dortet, Laurent
Emeraud, Cécile
Oueslati, Saoussen
Girlich, Delphine
Ronat, Jean-Baptiste
Bernabeu, Sandrine
Bahi, Silvestre
Atkinson, Gary J. H.
Naas, Thierry
author_facet Mendels, David-A.
Dortet, Laurent
Emeraud, Cécile
Oueslati, Saoussen
Girlich, Delphine
Ronat, Jean-Baptiste
Bernabeu, Sandrine
Bahi, Silvestre
Atkinson, Gary J. H.
Naas, Thierry
author_sort Mendels, David-A.
collection PubMed
description Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these seemingly easy-to-read tests can be highly subjective, and interpretations of the visible “bands” of color that appear (or not) in a test window may vary between users, test models, and brands. We developed and evaluated the accuracy/performance of a smartphone application (xRCovid) that uses machine learning to classify SARS-CoV-2 serological RDT results and reduce reading ambiguities. Across 11 COVID-19 RDT models, the app yielded 99.3% precision compared to reading by eye. Using the app replaces the uncertainty from visual RDT interpretation with a smaller uncertainty of the image classifier, thereby increasing confidence of clinicians and laboratory staff when using RDTs, and creating opportunities for patient self-testing.
format Online
Article
Text
id pubmed-7999948
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-79999482021-04-01 Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation Mendels, David-A. Dortet, Laurent Emeraud, Cécile Oueslati, Saoussen Girlich, Delphine Ronat, Jean-Baptiste Bernabeu, Sandrine Bahi, Silvestre Atkinson, Gary J. H. Naas, Thierry Proc Natl Acad Sci U S A Biological Sciences Serological rapid diagnostic tests (RDTs) are widely used across pathologies, often providing users a simple, binary result (positive or negative) in as little as 5 to 20 min. Since the beginning of the COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have rapidly proliferated. However, these seemingly easy-to-read tests can be highly subjective, and interpretations of the visible “bands” of color that appear (or not) in a test window may vary between users, test models, and brands. We developed and evaluated the accuracy/performance of a smartphone application (xRCovid) that uses machine learning to classify SARS-CoV-2 serological RDT results and reduce reading ambiguities. Across 11 COVID-19 RDT models, the app yielded 99.3% precision compared to reading by eye. Using the app replaces the uncertainty from visual RDT interpretation with a smaller uncertainty of the image classifier, thereby increasing confidence of clinicians and laboratory staff when using RDTs, and creating opportunities for patient self-testing. National Academy of Sciences 2021-03-23 2021-03-05 /pmc/articles/PMC7999948/ /pubmed/33674422 http://dx.doi.org/10.1073/pnas.2019893118 Text en Copyright © 2021 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Mendels, David-A.
Dortet, Laurent
Emeraud, Cécile
Oueslati, Saoussen
Girlich, Delphine
Ronat, Jean-Baptiste
Bernabeu, Sandrine
Bahi, Silvestre
Atkinson, Gary J. H.
Naas, Thierry
Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
title Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
title_full Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
title_fullStr Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
title_full_unstemmed Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
title_short Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation
title_sort using artificial intelligence to improve covid-19 rapid diagnostic test result interpretation
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999948/
https://www.ncbi.nlm.nih.gov/pubmed/33674422
http://dx.doi.org/10.1073/pnas.2019893118
work_keys_str_mv AT mendelsdavida usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT dortetlaurent usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT emeraudcecile usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT oueslatisaoussen usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT girlichdelphine usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT ronatjeanbaptiste usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT bernabeusandrine usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT bahisilvestre usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT atkinsongaryjh usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation
AT naasthierry usingartificialintelligencetoimprovecovid19rapiddiagnostictestresultinterpretation