Cargando…

Silver Nanowire Synthesis and Strategies for Fabricating Transparent Conducting Electrodes

One-dimensional metal nanowires, with novel functionalities like electrical conductivity, optical transparency and high mechanical stiffness, have attracted widespread interest for use in applications such as transparent electrodes in optoelectronic devices and active components in nanoelectronics a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Amit, Shaikh, Muhammad Omar, Chuang, Cheng-Hsin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000035/
https://www.ncbi.nlm.nih.gov/pubmed/33802059
http://dx.doi.org/10.3390/nano11030693
Descripción
Sumario:One-dimensional metal nanowires, with novel functionalities like electrical conductivity, optical transparency and high mechanical stiffness, have attracted widespread interest for use in applications such as transparent electrodes in optoelectronic devices and active components in nanoelectronics and nanophotonics. In particular, silver nanowires (AgNWs) have been widely researched owing to the superlative thermal and electrical conductivity of bulk silver. Herein, we present a detailed review of the synthesis of AgNWs and their utilization in fabricating improved transparent conducting electrodes (TCE). We discuss a range of AgNW synthesis protocols, including template assisted and wet chemical techniques, and their ability to control the morphology of the synthesized nanowires. Furthermore, the use of scalable and cost-effective solution deposition methods to fabricate AgNW based TCE, along with the numerous treatments used for enhancing their optoelectronic properties, are also discussed.