Cargando…

Ectopic Expression of OLEOSIN 1 and Inactivation of GBSS1 Have a Synergistic Effect on Oil Accumulation in Plant Leaves

During the transformation of wild-type (WT) Arabidopsis thaliana, a T-DNA containing OLEOSIN-GFP (OLE1-GFP) was inserted by happenstance within the GBSS1 gene, resulting in significant reduction in amylose and increase in leaf oil content in the transgenic line (OG). The synergistic effect on oil ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhai, Zhiyang, Liu, Hui, Shanklin, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000217/
https://www.ncbi.nlm.nih.gov/pubmed/33803467
http://dx.doi.org/10.3390/plants10030513
Descripción
Sumario:During the transformation of wild-type (WT) Arabidopsis thaliana, a T-DNA containing OLEOSIN-GFP (OLE1-GFP) was inserted by happenstance within the GBSS1 gene, resulting in significant reduction in amylose and increase in leaf oil content in the transgenic line (OG). The synergistic effect on oil accumulation of combining gbss1 with the expression of OLE1-GFP was confirmed by transforming an independent gbss1 mutant (GABI_914G01) with OLE1-GFP. The resulting OLE1-GFP/gbss1 transgenic lines showed higher leaf oil content than the individual OLE1-GFP/WT or single gbss1 mutant lines. Further stacking of the lipogenic factors WRINKLED1, Diacylglycerol O-Acyltransferase (DGAT1), and Cys-OLEOSIN1 (an engineered sesame OLEOSIN1) in OG significantly elevated its oil content in mature leaves to 2.3% of dry weight, which is 15 times higher than that in WT Arabidopsis. Inducible expression of the same lipogenic factors was shown to be an effective strategy for triacylglycerol (TAG) accumulation without incurring growth, development, and yield penalties.