Cargando…
Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films
The demand for bioplastic material for industrial applications is increasing. However, moisture absorption and low mechanical strength have limited the use of bioplastic in commercial-scale applications. Macroalgae is no exception to these challenges of bioplastics. In this study, Kappaphycus alvare...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000402/ https://www.ncbi.nlm.nih.gov/pubmed/33806473 http://dx.doi.org/10.3390/nano11030637 |
_version_ | 1783670992801890304 |
---|---|
author | Rizal, Samsul Alfatah, Tata H. P. S., Abdul Khalil Mistar, E. M. Abdullah, C. K. Olaiya, Funmilayo G. Sabaruddin, F. A. , Ikramullah Muksin, Umar |
author_facet | Rizal, Samsul Alfatah, Tata H. P. S., Abdul Khalil Mistar, E. M. Abdullah, C. K. Olaiya, Funmilayo G. Sabaruddin, F. A. , Ikramullah Muksin, Umar |
author_sort | Rizal, Samsul |
collection | PubMed |
description | The demand for bioplastic material for industrial applications is increasing. However, moisture absorption and low mechanical strength have limited the use of bioplastic in commercial-scale applications. Macroalgae is no exception to these challenges of bioplastics. In this study, Kappaphycus alvarezii macroalgae were reinforced with lignin nanoparticles. Lignin nanoparticles (LNPs) were used as a filler to reduce the brittleness and hydrophilic nature of macroalgae (matrix). Lignin nanofiller was produced using a green approach from black liquor of soda pulping waste and purified. The physical, mechanical, morphological, structural, thermal, and water barrier properties of LNPs with and without the purification process in macroalgae films were studied. The bioplastic films’ functional properties, such as physical, mechanical, thermal, and water barrier properties, were significantly improved by incorporating purified and unpurified LNPs. However, the purified LNPs have a greater reinforcement effect on the macroalgae than unpurified LNPs. In this study, bioplastic film with 5% purified LNPs presented the optimum enhancement on almost all the functional properties. The enhancement is attributed to high compatibility due to strong interfacial interaction between the nanofiller and matrix. The developed LNPs/macroalgae bioplastic films can provide additional benefits and solutions to various industrial applications, especially packaging material. |
format | Online Article Text |
id | pubmed-8000402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80004022021-03-28 Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films Rizal, Samsul Alfatah, Tata H. P. S., Abdul Khalil Mistar, E. M. Abdullah, C. K. Olaiya, Funmilayo G. Sabaruddin, F. A. , Ikramullah Muksin, Umar Nanomaterials (Basel) Article The demand for bioplastic material for industrial applications is increasing. However, moisture absorption and low mechanical strength have limited the use of bioplastic in commercial-scale applications. Macroalgae is no exception to these challenges of bioplastics. In this study, Kappaphycus alvarezii macroalgae were reinforced with lignin nanoparticles. Lignin nanoparticles (LNPs) were used as a filler to reduce the brittleness and hydrophilic nature of macroalgae (matrix). Lignin nanofiller was produced using a green approach from black liquor of soda pulping waste and purified. The physical, mechanical, morphological, structural, thermal, and water barrier properties of LNPs with and without the purification process in macroalgae films were studied. The bioplastic films’ functional properties, such as physical, mechanical, thermal, and water barrier properties, were significantly improved by incorporating purified and unpurified LNPs. However, the purified LNPs have a greater reinforcement effect on the macroalgae than unpurified LNPs. In this study, bioplastic film with 5% purified LNPs presented the optimum enhancement on almost all the functional properties. The enhancement is attributed to high compatibility due to strong interfacial interaction between the nanofiller and matrix. The developed LNPs/macroalgae bioplastic films can provide additional benefits and solutions to various industrial applications, especially packaging material. MDPI 2021-03-04 /pmc/articles/PMC8000402/ /pubmed/33806473 http://dx.doi.org/10.3390/nano11030637 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Rizal, Samsul Alfatah, Tata H. P. S., Abdul Khalil Mistar, E. M. Abdullah, C. K. Olaiya, Funmilayo G. Sabaruddin, F. A. , Ikramullah Muksin, Umar Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films |
title | Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films |
title_full | Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films |
title_fullStr | Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films |
title_full_unstemmed | Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films |
title_short | Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films |
title_sort | properties and characterization of lignin nanoparticles functionalized in macroalgae biopolymer films |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000402/ https://www.ncbi.nlm.nih.gov/pubmed/33806473 http://dx.doi.org/10.3390/nano11030637 |
work_keys_str_mv | AT rizalsamsul propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT alfatahtata propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT hpsabdulkhalil propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT mistarem propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT abdullahck propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT olaiyafunmilayog propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT sabaruddinfa propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT ikramullah propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms AT muksinumar propertiesandcharacterizationofligninnanoparticlesfunctionalizedinmacroalgaebiopolymerfilms |