Cargando…

Discovery and Optimization of Selective Inhibitors of Meprin α (Part I)

Meprin α and β are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer’s. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins develop...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Shurong, Diez, Juan, Wang, Chao, Becker-Pauly, Christoph, Fields, Gregg B., Bannister, Thomas, Spicer, Timothy P., Scampavia, Louis D., Minond, Dmitriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000592/
https://www.ncbi.nlm.nih.gov/pubmed/33671080
http://dx.doi.org/10.3390/ph14030203
Descripción
Sumario:Meprin α and β are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer’s. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins developed in previous years are not effective in inhibiting meprins suggesting the need for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed ultrahigh-throughput assays and conducted parallel screening of >650,000 compounds against each meprin. As a result of this effort, we identified five selective meprin α hits belonging to three different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and phenoxy-hydroxyacetamides). These hits demonstrated a nanomolar to micromolar inhibitory activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin β and other related metzincincs. These selective inhibitors of meprin α provide a good starting point for further optimization.