Cargando…

Staphylococcus aureus Induces IFN-β Production via a CARMA3-Independent Mechanism

Type I interferon (IFN) induction is a critical component of innate immune response to viral and bacterial infection, including S. aureus, but whether it activates the signaling in macrophages and the regulation mechanisms is less well understood. Here we show that S. aureus infection promoted the I...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yang, Zhao, Shasha, Gao, Xiao, Jiang, Songhong, Ma, Jialu, Wang, Rui, Li, Qing, Qin, Leiying, Tong, Zhizi, Wu, Junwei, Zhao, Jianjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000617/
https://www.ncbi.nlm.nih.gov/pubmed/33806598
http://dx.doi.org/10.3390/pathogens10030300
Descripción
Sumario:Type I interferon (IFN) induction is a critical component of innate immune response to viral and bacterial infection, including S. aureus, but whether it activates the signaling in macrophages and the regulation mechanisms is less well understood. Here we show that S. aureus infection promoted the IFN-β mRNA expression and stimulator of IFN genes (STING)/TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)-dependent production of IFN-β. Infection with S. aureus induced caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) expression at both the mRNA and protein levels. The heat-killed bacteria failed to trigger IRF3 phosphorylation and upregulation of CARMA3 expression. However, overexpression of CARMA3 did not affect phosphorylation of TBK1 or IRF3 in RAW264.7 cells, J774A.1 macrophages, and mouse embryonic fibroblast (MEF) cells. In conclusion, S. aureus infection induces STING/TBK1/IRF3-mediated IFN-β production in a CARMA3-independent manner.