Cargando…
Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging
Nanoparticles have been employed to develop nanosensors and drug carriers that accumulate in tumors. Thus, it is necessary to control the particle size, surface potential, and biodegradability of these nanoparticles for effective tumor accumulation and safe medical application. In this study, to for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000643/ https://www.ncbi.nlm.nih.gov/pubmed/33809100 http://dx.doi.org/10.3390/nano11030714 |
_version_ | 1783671044711645184 |
---|---|
author | Kimura, Atsushi Ueno, Miho Arai, Tadashi Oyama, Kotaro Taguchi, Mitsumasa |
author_facet | Kimura, Atsushi Ueno, Miho Arai, Tadashi Oyama, Kotaro Taguchi, Mitsumasa |
author_sort | Kimura, Atsushi |
collection | PubMed |
description | Nanoparticles have been employed to develop nanosensors and drug carriers that accumulate in tumors. Thus, it is necessary to control the particle size, surface potential, and biodegradability of these nanoparticles for effective tumor accumulation and safe medical application. In this study, to form a nanoparticle platform suitable for diagnostic and drug delivery system (DDS) applications, peptides composed of aromatic amino acid residues were designed and synthesized based on the radiation crosslinking mechanism of proteins. The peptide nanoparticles, which were produced by γ-ray irradiation, displayed a positive surface potential, maintained biodegradability, and were stable in water and phosphoric buffer solution during actual diagnosis. The surface potential of the peptide nanoparticles could be changed to negative by using a fluorescent labeling reagent, so that the fluorescent-labeled peptide nanoparticles were uptaken by HeLa cells. The radiation-crosslinked nanoparticles can be applied as a platform for tumor-targeting diagnostics and DDS therapy. |
format | Online Article Text |
id | pubmed-8000643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80006432021-03-28 Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging Kimura, Atsushi Ueno, Miho Arai, Tadashi Oyama, Kotaro Taguchi, Mitsumasa Nanomaterials (Basel) Article Nanoparticles have been employed to develop nanosensors and drug carriers that accumulate in tumors. Thus, it is necessary to control the particle size, surface potential, and biodegradability of these nanoparticles for effective tumor accumulation and safe medical application. In this study, to form a nanoparticle platform suitable for diagnostic and drug delivery system (DDS) applications, peptides composed of aromatic amino acid residues were designed and synthesized based on the radiation crosslinking mechanism of proteins. The peptide nanoparticles, which were produced by γ-ray irradiation, displayed a positive surface potential, maintained biodegradability, and were stable in water and phosphoric buffer solution during actual diagnosis. The surface potential of the peptide nanoparticles could be changed to negative by using a fluorescent labeling reagent, so that the fluorescent-labeled peptide nanoparticles were uptaken by HeLa cells. The radiation-crosslinked nanoparticles can be applied as a platform for tumor-targeting diagnostics and DDS therapy. MDPI 2021-03-12 /pmc/articles/PMC8000643/ /pubmed/33809100 http://dx.doi.org/10.3390/nano11030714 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Kimura, Atsushi Ueno, Miho Arai, Tadashi Oyama, Kotaro Taguchi, Mitsumasa Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging |
title | Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging |
title_full | Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging |
title_fullStr | Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging |
title_full_unstemmed | Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging |
title_short | Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging |
title_sort | radiation crosslinked smart peptide nanoparticles: a new platform for tumor imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000643/ https://www.ncbi.nlm.nih.gov/pubmed/33809100 http://dx.doi.org/10.3390/nano11030714 |
work_keys_str_mv | AT kimuraatsushi radiationcrosslinkedsmartpeptidenanoparticlesanewplatformfortumorimaging AT uenomiho radiationcrosslinkedsmartpeptidenanoparticlesanewplatformfortumorimaging AT araitadashi radiationcrosslinkedsmartpeptidenanoparticlesanewplatformfortumorimaging AT oyamakotaro radiationcrosslinkedsmartpeptidenanoparticlesanewplatformfortumorimaging AT taguchimitsumasa radiationcrosslinkedsmartpeptidenanoparticlesanewplatformfortumorimaging |