Cargando…
The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment
Mesenchymal stem (MS) cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells are known for their ability to differentiate into different lineages, including chondrocytes in culture. However, the existing protocol for chondrocyte differentiation is time consuming and labor intensi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000805/ https://www.ncbi.nlm.nih.gov/pubmed/33804138 http://dx.doi.org/10.3390/ijms22062978 |
_version_ | 1783671081857449984 |
---|---|
author | Wang, Chie-Hong Tsai, Chun-Hao Lin, Tsung-Li Liu, Shih-Ping |
author_facet | Wang, Chie-Hong Tsai, Chun-Hao Lin, Tsung-Li Liu, Shih-Ping |
author_sort | Wang, Chie-Hong |
collection | PubMed |
description | Mesenchymal stem (MS) cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells are known for their ability to differentiate into different lineages, including chondrocytes in culture. However, the existing protocol for chondrocyte differentiation is time consuming and labor intensive. To improve and simplify the differentiation strategy, we have explored the effects of interactions between growth factors (transforming growth factor β1 (Tgfb1) and colony stimulating factor 3 (Csf3), and culture environments (2D monolayer and 3D nanofiber scaffold) on chondrogenic differentiation. For this, we have examined cell morphologies, proliferation rates, viability, and gene expression profiles, and characterized the cartilaginous matrix formed in the chondrogenic cultures under different treatment regimens. Our data show that 3D cultures support higher proliferation rate than the 2D cultures. Tgfb1 promotes cell proliferation and viability in both types of culture, whereas Csf3 shows positive effects only in 3D cultures. Interestingly, our results indicate that the combined treatments of Tgfb1 and Csf3 do not affect cell proliferation and viability. The expression of cartilaginous matrix in different treatment groups indicates the presence of chondrocytes. We found that, at the end of differentiation stage 1, pluripotent markers were downregulated, while the mesodermal marker was upregulated. However, the expression of chondrogenic markers (col2a1 and aggrecan) was upregulated only in the 3D cultures. Here, we report an efficient, scalable, and convenient protocol for chondrogenic differentiation of iPS cells, and our data suggest that a 3D culture environment, combined with tgfb1 and csf3 treatment, promotes the chondrogenic differentiation. |
format | Online Article Text |
id | pubmed-8000805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80008052021-03-28 The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment Wang, Chie-Hong Tsai, Chun-Hao Lin, Tsung-Li Liu, Shih-Ping Int J Mol Sci Article Mesenchymal stem (MS) cells, embryonic stem (ES) cells, and induced pluripotent stem (iPS) cells are known for their ability to differentiate into different lineages, including chondrocytes in culture. However, the existing protocol for chondrocyte differentiation is time consuming and labor intensive. To improve and simplify the differentiation strategy, we have explored the effects of interactions between growth factors (transforming growth factor β1 (Tgfb1) and colony stimulating factor 3 (Csf3), and culture environments (2D monolayer and 3D nanofiber scaffold) on chondrogenic differentiation. For this, we have examined cell morphologies, proliferation rates, viability, and gene expression profiles, and characterized the cartilaginous matrix formed in the chondrogenic cultures under different treatment regimens. Our data show that 3D cultures support higher proliferation rate than the 2D cultures. Tgfb1 promotes cell proliferation and viability in both types of culture, whereas Csf3 shows positive effects only in 3D cultures. Interestingly, our results indicate that the combined treatments of Tgfb1 and Csf3 do not affect cell proliferation and viability. The expression of cartilaginous matrix in different treatment groups indicates the presence of chondrocytes. We found that, at the end of differentiation stage 1, pluripotent markers were downregulated, while the mesodermal marker was upregulated. However, the expression of chondrogenic markers (col2a1 and aggrecan) was upregulated only in the 3D cultures. Here, we report an efficient, scalable, and convenient protocol for chondrogenic differentiation of iPS cells, and our data suggest that a 3D culture environment, combined with tgfb1 and csf3 treatment, promotes the chondrogenic differentiation. MDPI 2021-03-15 /pmc/articles/PMC8000805/ /pubmed/33804138 http://dx.doi.org/10.3390/ijms22062978 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Chie-Hong Tsai, Chun-Hao Lin, Tsung-Li Liu, Shih-Ping The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment |
title | The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment |
title_full | The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment |
title_fullStr | The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment |
title_full_unstemmed | The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment |
title_short | The Effects of Tgfb1 and Csf3 on Chondrogenic Differentiation of iPS Cells in 2D and 3D Culture Environment |
title_sort | effects of tgfb1 and csf3 on chondrogenic differentiation of ips cells in 2d and 3d culture environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000805/ https://www.ncbi.nlm.nih.gov/pubmed/33804138 http://dx.doi.org/10.3390/ijms22062978 |
work_keys_str_mv | AT wangchiehong theeffectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT tsaichunhao theeffectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT lintsungli theeffectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT liushihping theeffectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT wangchiehong effectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT tsaichunhao effectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT lintsungli effectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment AT liushihping effectsoftgfb1andcsf3onchondrogenicdifferentiationofipscellsin2dand3dcultureenvironment |