Cargando…
Breast Tumor Characterization Using [(18)F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics
SIMPLE SUMMARY: Breast cancer is the second most common diagnosed malignancy in women worldwide. In this study, we examine the feasibility of breast tumor characterization based on [(18)F]FDG-PET/CT images using machine learning (ML) approaches in combination with data-preprocessing techniques. ML p...
Autores principales: | Krajnc, Denis, Papp, Laszlo, Nakuz, Thomas S., Magometschnigg, Heinrich F., Grahovac, Marko, Spielvogel, Clemens P., Ecsedi, Boglarka, Bago-Horvath, Zsuzsanna, Haug, Alexander, Karanikas, Georgios, Beyer, Thomas, Hacker, Marcus, Helbich, Thomas H., Pinker, Katja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000810/ https://www.ncbi.nlm.nih.gov/pubmed/33809057 http://dx.doi.org/10.3390/cancers13061249 |
Ejemplares similares
-
Machine learning predictive performance evaluation of conventional and fuzzy radiomics in clinical cancer imaging cohorts
por: Grahovac, M., et al.
Publicado: (2023) -
Automated data preparation for in vivo tumor characterization with machine learning
por: Krajnc, Denis, et al.
Publicado: (2022) -
Sex-specific radiomic features of L-[S-methyl-(11)C] methionine PET in patients with newly-diagnosed gliomas in relation to IDH1 predictability
por: Papp, Laszlo, et al.
Publicado: (2023) -
Sequential [(18)F]FDG-[(18)F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience
por: Andrzejewski, Piotr, et al.
Publicado: (2019) -
A Simultaneous Multiparametric (18)F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer
por: Romeo, Valeria, et al.
Publicado: (2022)