Cargando…

Transcriptome Profiling of the Retained Fetal Membranes—An Insight in the Possible Pathogenesis of the Disease

SIMPLE SUMMARY: Retained fetal membranes (RFM) in mares is a disease of a multifactorial etiology with not fully understood pathogenesis. Profound analysis of genes expressed in the placenta may reveal pathways and processes which might be comprised in mares with this disease and hence help to expla...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaworska, Joanna, Ropka-Molik, Katarzyna, Piórkowska, Katarzyna, Szmatoła, Tomasz, Kowalczyk-Zięba, Ilona, Wocławek-Potocka, Izabela, Siemieniuch, Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000898/
https://www.ncbi.nlm.nih.gov/pubmed/33802481
http://dx.doi.org/10.3390/ani11030675
Descripción
Sumario:SIMPLE SUMMARY: Retained fetal membranes (RFM) in mares is a disease of a multifactorial etiology with not fully understood pathogenesis. Profound analysis of genes expressed in the placenta may reveal pathways and processes which might be comprised in mares with this disease and hence help to explain the pathogenesis of RFM. This work employed RNA sequencing to identify and compare genes differentially expressed (DEGs) in the placenta of mares that retained fetal membranes and those that released them physiologically. Results showed that within DEGs genes important for apoptosis, inflammatory-related processes, and metabolism of extracellular matrix were identified. ABSTRACT: Retained fetal membranes (RFM) is one of the most common post-partum diseases of a complex etiology. Moreover, its pathogenesis is still not elucidated. Detailed transcriptomic analysis of physiological and retained placenta may bring profound insight in the pathogenesis of the disease. The aim of the study was to compare the transcriptome of the retained and physiologically released placenta as well as biological pathways and processes in order to determine the possible pathogenesis of the disease. Samples of the endometrium and the allantochorion were taken within 2 h after parturition from control mares (n = 3) and mares with RFM (n = 3). RNA sequencing was performed with the use of all samples and mRNA expression of chosen genes was validated with Real Time PCR. Analysis of RNA-seq identified 487 differentially expressed genes in the allantochorion and 261 in the endometrium of control and RFM mares (p < 0.0001). Within genes that may be important in the release of fetal membranes and were differentially expressed, our report pinpointed BGN, TIMP1, DRB, CD3E, C3, FCN3, CASP3, BCL2L1. Gene ontology analysis showed possible processes which were altered in RFM that are apoptosis, inflammatory-related processes, and extracellular matrix metabolism and might be involved in the pathogenesis of RFM. This is the first report on the transcriptome of RFM and physiologically released placenta in mares.