Cargando…
Regulation of Juvenile Hormone on Summer Diapause of Geleruca daurica and Its Pathway Analysis
SIMPLE SUMMARY: Diapause is an arrestment state in development, and plays an important role in life history in insects. It has been thought that a lack in juvenile hormone (JH) results in reproductive diapause occurring at the adult stage. However, we do not fully know about the underlying molecular...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000908/ https://www.ncbi.nlm.nih.gov/pubmed/33799822 http://dx.doi.org/10.3390/insects12030237 |
Sumario: | SIMPLE SUMMARY: Diapause is an arrestment state in development, and plays an important role in life history in insects. It has been thought that a lack in juvenile hormone (JH) results in reproductive diapause occurring at the adult stage. However, we do not fully know about the underlying molecular mechanism. In this study, we proved that the topical application of a JH analog methoprene caused the changes at the transcriptional levels of a great number of genes, inhibited lipid accumulation, and finally delayed the adults entering diapause. Therefore, JH signaling plays an important role in regulating reproductive diapause of G. daurica, a new pest with great outbreaks in Inner Mongolia. ABSTRACT: Juvenile hormone (JH) signaling plays an important role in regulation of reproductive diapause in insects. However, we have little understanding of the effect of JH on gene expression at the transcriptome level in diapause. Galeruca daurica is a new pest in the Inner Mongolia grasslands with obligatory summer diapause in the adult stage. Topical application of a JH analog methoprene at the pre-diapause stage delayed the adults entering diapause and inhibited lipid accumulation whereas it did not during diapause. Using Illumina sequencing technology and bioinformatics tools, 54 and 138 differentially expressed genes (DEGs) were detected at 1 and 2 d after treatment, respectively. The KEGG analysis showed that the DEGs were mainly enriched in the metabolism pathways. qRT-PCR analysis indicated that methoprene promoted the expression of genes encoding vitellogenin, fork head transcription factor and Krüppel homolog 1, whereas suppressed the expression of genes encoding juvenile hormone-binding protein, juvenile hormone esterase, juvenile hormone acid methyltransferase, juvenile hormone epoxide hydrolase and fatty acid synthase 2. These results indicate that JH signaling plays an important role in regulating reproductive diapause of G. daurica. |
---|