Cargando…
Identifying the Risk Factors Associated with Nursing Home Residents’ Pressure Ulcers Using Machine Learning Methods
Background: Machine learning (ML) can keep improving predictions and generating automated knowledge via data-driven predictors or decisions. Objective: The purpose of this study was to compare different ML methods including random forest, logistics regression, linear support vector machine (SVM), po...
Autores principales: | Lee, Soo-Kyoung, Shin, Juh Hyun, Ahn, Jinhyun, Lee, Ji Yeon, Jang, Dong Eun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001016/ https://www.ncbi.nlm.nih.gov/pubmed/33805798 http://dx.doi.org/10.3390/ijerph18062954 |
Ejemplares similares
-
Application of Machine Learning Methods in Nursing Home Research
por: Lee, Soo-Kyoung, et al.
Publicado: (2020) -
Nursing Staff Characteristics on Resident Outcomes in Nursing Homes
por: SHIN, Juh Hyun
Publicado: (2019) -
Identifying Frequently Used NANDA-I Nursing Diagnoses, NOC Outcomes, NIC Interventions, and NNN Linkages for Nursing Home Residents in Korea
por: Shin, Juh Hyun, et al.
Publicado: (2021) -
Increasing Registered Nurse Hours Per Resident Day for Improved Nursing Home Residents’ Outcomes Using a Longitudinal Study
por: Shin, Juh Hyun, et al.
Publicado: (2021) -
Why Do They Stay? Intention to Stay among Registered Nurses in Nursing Homes
por: Lee, Ji Yeon, et al.
Publicado: (2020)