Cargando…
Adipocyte-Mineralocorticoid Receptor Alters Mitochondrial Quality Control Leading to Mitochondrial Dysfunction and Senescence of Visceral Adipose Tissue
Mineralocorticoid receptor (MR) expression is increased in the adipose tissue (AT) of obese patients and animals. We previously demonstrated that adipocyte-MR overexpression in mice (Adipo-MROE mice) is associated with metabolic alterations. Moreover, we showed that MR regulates mitochondrial dysfun...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001019/ https://www.ncbi.nlm.nih.gov/pubmed/33809055 http://dx.doi.org/10.3390/ijms22062881 |
Sumario: | Mineralocorticoid receptor (MR) expression is increased in the adipose tissue (AT) of obese patients and animals. We previously demonstrated that adipocyte-MR overexpression in mice (Adipo-MROE mice) is associated with metabolic alterations. Moreover, we showed that MR regulates mitochondrial dysfunction and cellular senescence in the visceral AT of obese db/db mice. Our hypothesis is that adipocyte-MR overactivation triggers mitochondrial dysfunction and cellular senescence, through increased mitochondrial oxidative stress (OS). Using the Adipo-MROE mice with conditional adipocyte-MR expression, we evaluated the specific effects of adipocyte-MR on global and mitochondrial OS, as well as on OS-induced damage. Mitochondrial function was assessed by high throughput respirometry. Molecular mechanisms were probed in AT focusing on mitochondrial quality control and senescence markers. Adipo-MROE mice exhibited increased mitochondrial OS and altered mitochondrial respiration, associated with reduced biogenesis and increased fission. This was associated with OS-induced DNA-damage and AT premature senescence. In conclusion, targeted adipocyte-MR overexpression leads to an imbalance in mitochondrial dynamics and regeneration, to mitochondrial dysfunction and to ageing in visceral AT. These data bring new insights into the MR-dependent AT dysfunction in obesity. |
---|