Cargando…
Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results
SIMPLE SUMMARY: Oral cancer/oral squamous cell carcinoma (OSCC) is among the top ten most common cancers globally; early and accurate diagnosis of oral cancer is critical. Despite improvement in surgical and oncological treatments, patient survival has not improved over the last four decades. Our pu...
Autores principales: | Camalan, Seda, Mahmood, Hanya, Binol, Hamidullah, Araújo, Anna Luiza Damaceno, Santos-Silva, Alan Roger, Vargas, Pablo Agustin, Lopes, Marcio Ajudarte, Khurram, Syed Ali, Gurcan, Metin N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001078/ https://www.ncbi.nlm.nih.gov/pubmed/33799466 http://dx.doi.org/10.3390/cancers13061291 |
Ejemplares similares
-
Development and validation of a multivariable model for prediction of malignant transformation and recurrence of oral epithelial dysplasia
por: Mahmood, Hanya, et al.
Publicado: (2023) -
Histopathological parameters reported in microinvasive oral squamous cell carcinoma: a systematic review
por: Saldivia-Siracusa, Cristina, et al.
Publicado: (2023) -
Cloud-Based Federated Learning Implementation Across Medical Centers
por: Rajendran, Suraj, et al.
Publicado: (2021) -
Prediction of malignant transformation and recurrence of oral epithelial dysplasia using architectural and cytological feature specific prognostic models
por: Mahmood, Hanya, et al.
Publicado: (2022) -
OtoMatch: Content-based eardrum image retrieval using deep learning
por: Camalan, Seda, et al.
Publicado: (2020)