Cargando…

Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability

SIMPLE SUMMARY: Freshwater biodiversity is facing a severe crisis due to many different human-caused impacts, such as climate change, pollution, habitat alterations, etc. Aquatic insects are one of the most important bioindicators used in freshwater ecological quality assessment systems, yet knowled...

Descripción completa

Detalles Bibliográficos
Autores principales: Pozojević, Ivana, Ivković, Marija, Cetinić, Katarina Ana, Previšić, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001135/
https://www.ncbi.nlm.nih.gov/pubmed/33801793
http://dx.doi.org/10.3390/insects12030234
_version_ 1783671159187832832
author Pozojević, Ivana
Ivković, Marija
Cetinić, Katarina Ana
Previšić, Ana
author_facet Pozojević, Ivana
Ivković, Marija
Cetinić, Katarina Ana
Previšić, Ana
author_sort Pozojević, Ivana
collection PubMed
description SIMPLE SUMMARY: Freshwater biodiversity is facing a severe crisis due to many different human-caused impacts, such as climate change, pollution, habitat alterations, etc. Aquatic insects are one of the most important bioindicators used in freshwater ecological quality assessment systems, yet knowledge on diversity dynamics of their communities is incomplete. In the current study, we compare and evaluate performance of different diversity measures, i.e., commonly used simple diversity indices vs. novel complex measures incorporating ecological information of species (feeding behavior and stream zonation preferences). As a target group, we chose caddisflies, a species-rich, aquatic insect order, in different habitats of an anthropogenically unimpacted, connected karst barrage lake/riverine system. In line with our hypothesis, the complex diversity measures were more efficient in ranking and distinguishing different habitats, particularly the ones with similar communities. We also constructed a novel measure to rank the habitats by sensitivity to climate change, based on diversity of caddisfly communities and vulnerability of species inhabiting them. As expected, the springs were ranked as most vulnerable habitats. Our study further underlines the importance of integrating ecological information into biodiversity and vulnerability assessment of freshwater communities. ABSTRACT: Freshwater biodiversity is facing a severe crisis due to many human impacts, yet the diversity dynamics of freshwater communities and possibilities of assessing these are vastly unexplored. We aimed at emphasizing different aspects of portraying diversity of a species-rich, aquatic insect group (caddisflies; Trichoptera) across four different habitats in an anthropogenically unimpacted, connected karst barrage lake/riverine system. To define diversity, we used common indices with pre-set sensitivity to species abundance/dominance; i.e., sensitivity parameter (species richness, Shannon, Simpson, Berger-Parker) and diversity profiles based on continuous gradients of this sensitivity parameter: the naïve and non-naïve diversity profiles developed by Leinster and Cobbold. The non-naïve diversity profiles show diversity profiles with regard to the similarity among species in terms of ecological traits and preferences, whereas the naïve diversity profile is called mathematically “naïve” as it assumes absolute dissimilarity between species that is almost never true. The commonly used indices and the naïve diversity profile both ranked the springs as least diverse and tufa barriers as most diverse. The non-naïve diversity profiles based on similarity matrices (using feeding behavior and stream zonation preferences of species), showed even greater differences between these habitats, while ranking stream habitats close together, regardless of their longitudinal position. We constructed the Climate Score index (CSI) in order to assess how diversity and species’ vulnerability project the community’s resistance and/or resilience to climate change. The CSI ranked the springs as most vulnerable, followed by all habitats longitudinally placed below them. We highlight the importance of integrating ecological information into biodiversity and vulnerability assessment of freshwater communities.
format Online
Article
Text
id pubmed-8001135
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80011352021-03-28 Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability Pozojević, Ivana Ivković, Marija Cetinić, Katarina Ana Previšić, Ana Insects Article SIMPLE SUMMARY: Freshwater biodiversity is facing a severe crisis due to many different human-caused impacts, such as climate change, pollution, habitat alterations, etc. Aquatic insects are one of the most important bioindicators used in freshwater ecological quality assessment systems, yet knowledge on diversity dynamics of their communities is incomplete. In the current study, we compare and evaluate performance of different diversity measures, i.e., commonly used simple diversity indices vs. novel complex measures incorporating ecological information of species (feeding behavior and stream zonation preferences). As a target group, we chose caddisflies, a species-rich, aquatic insect order, in different habitats of an anthropogenically unimpacted, connected karst barrage lake/riverine system. In line with our hypothesis, the complex diversity measures were more efficient in ranking and distinguishing different habitats, particularly the ones with similar communities. We also constructed a novel measure to rank the habitats by sensitivity to climate change, based on diversity of caddisfly communities and vulnerability of species inhabiting them. As expected, the springs were ranked as most vulnerable habitats. Our study further underlines the importance of integrating ecological information into biodiversity and vulnerability assessment of freshwater communities. ABSTRACT: Freshwater biodiversity is facing a severe crisis due to many human impacts, yet the diversity dynamics of freshwater communities and possibilities of assessing these are vastly unexplored. We aimed at emphasizing different aspects of portraying diversity of a species-rich, aquatic insect group (caddisflies; Trichoptera) across four different habitats in an anthropogenically unimpacted, connected karst barrage lake/riverine system. To define diversity, we used common indices with pre-set sensitivity to species abundance/dominance; i.e., sensitivity parameter (species richness, Shannon, Simpson, Berger-Parker) and diversity profiles based on continuous gradients of this sensitivity parameter: the naïve and non-naïve diversity profiles developed by Leinster and Cobbold. The non-naïve diversity profiles show diversity profiles with regard to the similarity among species in terms of ecological traits and preferences, whereas the naïve diversity profile is called mathematically “naïve” as it assumes absolute dissimilarity between species that is almost never true. The commonly used indices and the naïve diversity profile both ranked the springs as least diverse and tufa barriers as most diverse. The non-naïve diversity profiles based on similarity matrices (using feeding behavior and stream zonation preferences of species), showed even greater differences between these habitats, while ranking stream habitats close together, regardless of their longitudinal position. We constructed the Climate Score index (CSI) in order to assess how diversity and species’ vulnerability project the community’s resistance and/or resilience to climate change. The CSI ranked the springs as most vulnerable, followed by all habitats longitudinally placed below them. We highlight the importance of integrating ecological information into biodiversity and vulnerability assessment of freshwater communities. MDPI 2021-03-10 /pmc/articles/PMC8001135/ /pubmed/33801793 http://dx.doi.org/10.3390/insects12030234 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Pozojević, Ivana
Ivković, Marija
Cetinić, Katarina Ana
Previšić, Ana
Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability
title Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability
title_full Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability
title_fullStr Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability
title_full_unstemmed Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability
title_short Peeling the Layers of Caddisfly Diversity on a Longitudinal Gradient in Karst Freshwater Habitats Reveals Community Dynamics and Stability
title_sort peeling the layers of caddisfly diversity on a longitudinal gradient in karst freshwater habitats reveals community dynamics and stability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001135/
https://www.ncbi.nlm.nih.gov/pubmed/33801793
http://dx.doi.org/10.3390/insects12030234
work_keys_str_mv AT pozojevicivana peelingthelayersofcaddisflydiversityonalongitudinalgradientinkarstfreshwaterhabitatsrevealscommunitydynamicsandstability
AT ivkovicmarija peelingthelayersofcaddisflydiversityonalongitudinalgradientinkarstfreshwaterhabitatsrevealscommunitydynamicsandstability
AT cetinickatarinaana peelingthelayersofcaddisflydiversityonalongitudinalgradientinkarstfreshwaterhabitatsrevealscommunitydynamicsandstability
AT previsicana peelingthelayersofcaddisflydiversityonalongitudinalgradientinkarstfreshwaterhabitatsrevealscommunitydynamicsandstability