Cargando…

Assessing Stability of Crutch Users by Non-Contact Methods

Enhancing gait stability in people who use crutches is paramount for their health. With the significant difference in gait compared to users who do not require an assistive device, the use of standard gait analysis tools to measure movement for temporary crush users and physically disabled people pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Vairis, Achilles, Brown, Suzana, Bess, Maurice, Bae, Kyu Hyun, Boyack, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001143/
https://www.ncbi.nlm.nih.gov/pubmed/33804014
http://dx.doi.org/10.3390/ijerph18063001
Descripción
Sumario:Enhancing gait stability in people who use crutches is paramount for their health. With the significant difference in gait compared to users who do not require an assistive device, the use of standard gait analysis tools to measure movement for temporary crush users and physically disabled people proves to be more challenging. In this paper, a novel approach based on video analysis is proposed as non-contact low-cost solution to the more expensive alternative with the data collected from processed videos, two values are calculated: the Signal to Noise Ratio (SNR) of acceleration, and the Signal to Noise Ratio of the jerk (time derivative of acceleration), to assess the user’s stability while they walk with crutches. The adopted methodology has been tested on a total of 10 participants. Five are temporary users of assistive devices with one being a long-term user and the other four novice users, and five are disabled participants who use those assistive devices permanently. Preliminary results show differences between novice users, long-term users, and physically disabled users. The approach is promising and could improve the assessment of crutch user stability, allowing for the correction of gait for individuals while using an inexpensive non-contact setup and preventing unnecessary falls.