Cargando…
Recognition of Cosmic Ray Images Obtained from CMOS Sensors Used in Mobile Phones by Approximation of Uncertain Class Assignment with Deep Convolutional Neural Network
In this paper, we describe the convolutional neural network (CNN)-based approach to the problems of categorization and artefact reduction of cosmic ray images obtained from CMOS sensors used in mobile phones. As artefacts, we understand all images that cannot be attributed to particles’ passage thro...
Autores principales: | Hachaj, Tomasz, Bibrzycki, Łukasz, Piekarczyk, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001219/ https://www.ncbi.nlm.nih.gov/pubmed/33799607 http://dx.doi.org/10.3390/s21061963 |
Ejemplares similares
-
The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms
por: Hachaj, Tomasz, et al.
Publicado: (2023) -
Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
por: Bar, Olaf, et al.
Publicado: (2021) -
Evaluation of Pattern Recognition Methods for Head Gesture-Based Interface of a Virtual Reality Helmet Equipped with a Single IMU Sensor
por: Hachaj, Tomasz, et al.
Publicado: (2019) -
Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes
por: Hachaj, Tomasz, et al.
Publicado: (2017) -
The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes
por: Blas, Diego, et al.
Publicado: (2011)