Cargando…
Explainable Machine Learning Model for Glaucoma Diagnosis and Its Interpretation
The aim is to develop a machine learning prediction model for the diagnosis of glaucoma and an explanation system for a specific prediction. Clinical data of the patients based on a visual field test, a retinal nerve fiber layer optical coherence tomography (RNFL OCT) test, a general examination inc...
Autores principales: | Oh, Sejong, Park, Yuli, Cho, Kyong Jin, Kim, Seong Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001225/ https://www.ncbi.nlm.nih.gov/pubmed/33805685 http://dx.doi.org/10.3390/diagnostics11030510 |
Ejemplares similares
-
Development of machine learning models for diagnosis of glaucoma
por: Kim, Seong Jae, et al.
Publicado: (2017) -
Development of the Integrated Glaucoma Risk Index
por: Oh, Sejong, et al.
Publicado: (2022) -
Choroidal vascular index in patients with open angle glaucoma and preperimetric glaucoma
por: Park, Yuli, et al.
Publicado: (2019) -
Explainable and interpretable models in computer vision and machine learning
por: Escalante, Hugo Jair, et al.
Publicado: (2019) -
Editorial: Interpretable and explainable machine learning models in oncology
por: Hrinivich, William Thomas, et al.
Publicado: (2023)