Cargando…

Characteristics and Photovoltaic Applications of Au-Doped ZnO–Sm Nanoparticle Films

Au-doped ZnO–samarium nitrate (Sm) nanoparticles with fixed concentrations of Sm (1 wt %) and various concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %) were prepared and used as photoelectrodes to enhance the photovoltaic efficiency of dye-sensitized solar cells (DSSCs). The cell fabricated with 1.5...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleem, Muhammad, Irshad, Kashif, Ur Rehman, Saif, Javed, M. Sufyan, Hasan, Mohd Abul, Ali, Hafiz Muhammad, Ali, Amjad, Malik, Muhammad Zeeshan, Islam, Saiful
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001248/
https://www.ncbi.nlm.nih.gov/pubmed/33799567
http://dx.doi.org/10.3390/nano11030702
Descripción
Sumario:Au-doped ZnO–samarium nitrate (Sm) nanoparticles with fixed concentrations of Sm (1 wt %) and various concentrations of Au (0.0, 0.5, 1.0 and 1.5 wt %) were prepared and used as photoelectrodes to enhance the photovoltaic efficiency of dye-sensitized solar cells (DSSCs). The cell fabricated with 1.5 wt % of Au-doped ZnO–Sm nanoparticles film achieved an optimal efficiency of 4.35%, which is about 76% higher than that of 0.0 wt % of Au-doped ZnO–Sm-based cell (2.47%). This increase might be due to the formation of a blocking layer at the ZnO–Sm/Au interface, which inhibits the recombination of electrons. This increase may also be attributed to the addition of rare-earth ions in ZnO to enhance the non-absorbable wavelength region of light via up/down-conversion of near-infrared and ultraviolet radiations to visible emission and reduce the recombination loss of electron in the cell. The efficiency of cells may be increased by the blocking layer and up/down-conversion process and thus promote the overall performance of the cells. This work indicates that Au-doped ZnO–Sm nanoparticle films have the potential to increase the performance of DSSCs.