Cargando…

Indwelling Device-Associated Biofilms in Critically Ill Cancer Patients—Study Protocol

Health care-associated infections are a leading cause of inpatient complications. Rapid pathogen detection/identification is a major challenge in sepsis management that highly influences the successful outcome. The current standard of microorganism identification relies on bacterial growth in cultur...

Descripción completa

Detalles Bibliográficos
Autores principales: Lungu, Olguta, Grigoras, Ioana, Dorneanu, Olivia Simona, Lunca, Catalina, Vremera, Teodora, Copacianu, Stefania Brandusa, Ivanov, Iuliu, Iancu, Luminita Smaranda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001301/
https://www.ncbi.nlm.nih.gov/pubmed/33800769
http://dx.doi.org/10.3390/pathogens10030306
Descripción
Sumario:Health care-associated infections are a leading cause of inpatient complications. Rapid pathogen detection/identification is a major challenge in sepsis management that highly influences the successful outcome. The current standard of microorganism identification relies on bacterial growth in culture, which has several limitations. Gene sequencing research has developed culture-independent techniques for microorganism identification, with the aim to improve etiological diagnosis and, therefore, to change sepsis outcome. A prospective, observational, non-interventional, single-center study was designed that assesses biofilm-associated pathogens in a specific subpopulation of septic critically ill cancer patients. Indwelling device samples will be collected in septic patients at the moment of the removal of the arterial catheter, central venous catheter, endotracheal tube and urinary catheter. Concomitantly, clinical data regarding 4 sites (nasal, pharyngeal, rectal and skin) of pathogen colonization at the time of hospital/intensive care admission will be collected. The present study aims to offer new insights into biofilm-associated infections and to evaluate the infection caused by catheter-specific and patient-specific biofilm-associated pathogens in association with the extent of colonization. The analysis relies on the two following detection/identification techniques: standard microbiological method and next generation sequencing (NGS). Retrospectively, the study will estimate the clinical value of the NGS-based detection and its virtual potential in changing patient management and outcome, notably in the subjects with missing sepsis source or lack of response to anti-infective treatment.