Cargando…

Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity

Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods....

Descripción completa

Detalles Bibliográficos
Autores principales: Selim, Mohamed T., Salem, Salem S., Mohamed, Asem A., El-Gamal, Mamdouh S., Awad, Mohamed F., Fouda, Amr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001397/
https://www.ncbi.nlm.nih.gov/pubmed/33803129
http://dx.doi.org/10.3390/jof7030193
_version_ 1783671220282064896
author Selim, Mohamed T.
Salem, Salem S.
Mohamed, Asem A.
El-Gamal, Mamdouh S.
Awad, Mohamed F.
Fouda, Amr
author_facet Selim, Mohamed T.
Salem, Salem S.
Mohamed, Asem A.
El-Gamal, Mamdouh S.
Awad, Mohamed F.
Fouda, Amr
author_sort Selim, Mohamed T.
collection PubMed
description Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λ(max)) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.
format Online
Article
Text
id pubmed-8001397
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80013972021-03-28 Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity Selim, Mohamed T. Salem, Salem S. Mohamed, Asem A. El-Gamal, Mamdouh S. Awad, Mohamed F. Fouda, Amr J Fungi (Basel) Article Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λ(max)) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide. MDPI 2021-03-09 /pmc/articles/PMC8001397/ /pubmed/33803129 http://dx.doi.org/10.3390/jof7030193 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Selim, Mohamed T.
Salem, Salem S.
Mohamed, Asem A.
El-Gamal, Mamdouh S.
Awad, Mohamed F.
Fouda, Amr
Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
title Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
title_full Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
title_fullStr Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
title_full_unstemmed Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
title_short Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
title_sort biological treatment of real textile effluent using aspergillus flavus and fusarium oxysporium and their consortium along with the evaluation of their phytotoxicity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001397/
https://www.ncbi.nlm.nih.gov/pubmed/33803129
http://dx.doi.org/10.3390/jof7030193
work_keys_str_mv AT selimmohamedt biologicaltreatmentofrealtextileeffluentusingaspergillusflavusandfusariumoxysporiumandtheirconsortiumalongwiththeevaluationoftheirphytotoxicity
AT salemsalems biologicaltreatmentofrealtextileeffluentusingaspergillusflavusandfusariumoxysporiumandtheirconsortiumalongwiththeevaluationoftheirphytotoxicity
AT mohamedasema biologicaltreatmentofrealtextileeffluentusingaspergillusflavusandfusariumoxysporiumandtheirconsortiumalongwiththeevaluationoftheirphytotoxicity
AT elgamalmamdouhs biologicaltreatmentofrealtextileeffluentusingaspergillusflavusandfusariumoxysporiumandtheirconsortiumalongwiththeevaluationoftheirphytotoxicity
AT awadmohamedf biologicaltreatmentofrealtextileeffluentusingaspergillusflavusandfusariumoxysporiumandtheirconsortiumalongwiththeevaluationoftheirphytotoxicity
AT foudaamr biologicaltreatmentofrealtextileeffluentusingaspergillusflavusandfusariumoxysporiumandtheirconsortiumalongwiththeevaluationoftheirphytotoxicity