Cargando…
Deep Learning-Based Congestion Detection at Urban Intersections
In this paper, a deep learning-based traffic state discrimination method is proposed to detect traffic congestion at urban intersections. The detection algorithm includes two parts, global speed detection and a traffic state discrimination algorithm. Firstly, the region of interest (ROI) is selected...
Autores principales: | Yang, Xinghai, Wang, Fengjiao, Bai, Zhiquan, Xun, Feifei, Zhang, Yulin, Zhao, Xiuyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001408/ https://www.ncbi.nlm.nih.gov/pubmed/33803952 http://dx.doi.org/10.3390/s21062052 |
Ejemplares similares
-
GPS data Mining at Signalized Intersections for Congestion Charging
por: Yu, Wang, et al.
Publicado: (2022) -
Proactive Congestion Avoidance for Distributed Deep Learning
por: Kang, Minkoo, et al.
Publicado: (2020) -
Community detection in large scale congested urban road networks
por: Haghbayan, Seyed Arman, et al.
Publicado: (2021) -
Research on Short-Term Urban Traffic Congestion Based on Fuzzy Comprehensive Evaluation and Machine Learning
por: Mei, Yuan, et al.
Publicado: (2020) -
Understanding congested travel in urban areas
por: Çolak, Serdar, et al.
Publicado: (2016)