Cargando…
Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways
Many neurodegenerative diseases have several similar cellular dysregulations. We investigated the inhibitory role of Ishige okamurae, an edible brown alga, on neurodegenerative processes by estimating the effects of Ishige okamurae on excitotoxicity induced by glutamate in vitro and neurodegeneratio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001419/ https://www.ncbi.nlm.nih.gov/pubmed/33809381 http://dx.doi.org/10.3390/antiox10030440 |
_version_ | 1783671225484050432 |
---|---|
author | Kwon, Oh Yun Lee, Seung Ho |
author_facet | Kwon, Oh Yun Lee, Seung Ho |
author_sort | Kwon, Oh Yun |
collection | PubMed |
description | Many neurodegenerative diseases have several similar cellular dysregulations. We investigated the inhibitory role of Ishige okamurae, an edible brown alga, on neurodegenerative processes by estimating the effects of Ishige okamurae on excitotoxicity induced by glutamate in vitro and neurodegeneration induced by trimethyltin (TMT) in vivo. This study aimed to describe the molecular mechanisms responsible for the mediating anti-neurodegenerative effects of Ishige okamurae extract (IOE). The oral administration of IOE to TMT-injected mice impeded the TMT-mediated short- and long-term memory impairments investigated by the Morris water maze and Y-maze test. IOE attenuated TMT-mediated cellular apoptosis and the expression of brain-derived neurotrophic factor, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in mice brains. Glutamate-induced apoptosis and the expression of reactive oxygen species, Nrf2, and HO-1 in HT22 cells were also attenuated by IOE. In addition, TMT- and glutamate-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in mouse brain tissues and HT22 cells were attenuated by the treatment of IOE. In HT22 cells, administration of MAPK inhibitors recovered the glutamate induced by the expression of Nrf2, HO-1, and cellular dysregulation to the equal extent to IOE administration. Taken together, these results suggest that IOE could attenuate neurodegenerative processes, such as TMT- and glutamate-mediated neuronal dysregulation, by regulating MAPKs/Nrf-2/HO-1 antioxidant pathways. |
format | Online Article Text |
id | pubmed-8001419 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80014192021-03-28 Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways Kwon, Oh Yun Lee, Seung Ho Antioxidants (Basel) Article Many neurodegenerative diseases have several similar cellular dysregulations. We investigated the inhibitory role of Ishige okamurae, an edible brown alga, on neurodegenerative processes by estimating the effects of Ishige okamurae on excitotoxicity induced by glutamate in vitro and neurodegeneration induced by trimethyltin (TMT) in vivo. This study aimed to describe the molecular mechanisms responsible for the mediating anti-neurodegenerative effects of Ishige okamurae extract (IOE). The oral administration of IOE to TMT-injected mice impeded the TMT-mediated short- and long-term memory impairments investigated by the Morris water maze and Y-maze test. IOE attenuated TMT-mediated cellular apoptosis and the expression of brain-derived neurotrophic factor, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in mice brains. Glutamate-induced apoptosis and the expression of reactive oxygen species, Nrf2, and HO-1 in HT22 cells were also attenuated by IOE. In addition, TMT- and glutamate-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in mouse brain tissues and HT22 cells were attenuated by the treatment of IOE. In HT22 cells, administration of MAPK inhibitors recovered the glutamate induced by the expression of Nrf2, HO-1, and cellular dysregulation to the equal extent to IOE administration. Taken together, these results suggest that IOE could attenuate neurodegenerative processes, such as TMT- and glutamate-mediated neuronal dysregulation, by regulating MAPKs/Nrf-2/HO-1 antioxidant pathways. MDPI 2021-03-12 /pmc/articles/PMC8001419/ /pubmed/33809381 http://dx.doi.org/10.3390/antiox10030440 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Kwon, Oh Yun Lee, Seung Ho Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways |
title | Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways |
title_full | Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways |
title_fullStr | Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways |
title_full_unstemmed | Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways |
title_short | Ishige okamurae Suppresses Trimethyltin-Induced Neurodegeneration and Glutamate-Mediated Excitotoxicity by Regulating MAPKs/Nrf2/HO-1 Antioxidant Pathways |
title_sort | ishige okamurae suppresses trimethyltin-induced neurodegeneration and glutamate-mediated excitotoxicity by regulating mapks/nrf2/ho-1 antioxidant pathways |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001419/ https://www.ncbi.nlm.nih.gov/pubmed/33809381 http://dx.doi.org/10.3390/antiox10030440 |
work_keys_str_mv | AT kwonohyun ishigeokamuraesuppressestrimethyltininducedneurodegenerationandglutamatemediatedexcitotoxicitybyregulatingmapksnrf2ho1antioxidantpathways AT leeseungho ishigeokamuraesuppressestrimethyltininducedneurodegenerationandglutamatemediatedexcitotoxicitybyregulatingmapksnrf2ho1antioxidantpathways |