Cargando…

Effects of Diet and Phytogenic Inclusion on the Antioxidant Capacity of the Broiler Chicken Gut

SIMPLE SUMMARY: Triggering of poultry capacity to resist challenge stressors could be vital for animal performance and health. Diet may serve as a tool for modulating animal response to oxidative stress. Within the context of a balanced diet, certain feed additives of plant origin, such as phytogeni...

Descripción completa

Detalles Bibliográficos
Autores principales: Griela, Eirini, Paraskeuas, Vasileios, Mountzouris, Konstantinos C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001425/
https://www.ncbi.nlm.nih.gov/pubmed/33800377
http://dx.doi.org/10.3390/ani11030739
Descripción
Sumario:SIMPLE SUMMARY: Triggering of poultry capacity to resist challenge stressors could be vital for animal performance and health. Diet may serve as a tool for modulating animal response to oxidative stress. Within the context of a balanced diet, certain feed additives of plant origin, such as phytogenics, may confer additional cytoprotective effects. As gut health is a prerequisite for animal performance, this work delved into advancing our knowledge on dietary and phytogenic effects on the capacity of the poultry gut to counteract oxidative stress. Study findings showed that a reduction in dietary energy and protein intake by 5% primed important antioxidant responses especially upon phytogenic addition. The new knowledge could assist in devising nutritional management strategies for counteracting oxidative stress. ABSTRACT: The reduction in energy and protein dietary levels, whilst preserving the gut health of broilers, is warranted in modern poultry production. Phytogenic feed additives (PFAs) are purported to enhance performance and antioxidant capacity in broilers. However, few studies have assessed PFA effects on a molecular level related to antioxidant response. The aim of this study was to investigate the effects of administering two dietary types differing in energy and protein levels (L: 95% and H: 100% of hybrid optimal recommendations) supplemented with or without PFA (−, +) on gene expressions relevant for antioxidant response along the broiler gut. Interactions of diet type with PFA (i.e., treatments L−, L+, H−, H+) were determined for critical antioxidant and cyto-protective genes (i.e., nuclear factor erythroid 2-like 2 (Nrf2) pathway) and for the total antioxidant capacity (TAC) in the proximal gut. In particular, the overall antioxidant response along the broiler gut was increased upon reduced dietary energy and protein intake (diet type L) and consistently up-regulated by PFA addition. The study results provide a new mechanistic insight of diet and PFA functions with respect to the overall broiler gut antioxidant capacity.