Cargando…
Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy
In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001454/ https://www.ncbi.nlm.nih.gov/pubmed/33805652 http://dx.doi.org/10.3390/nano11030722 |
_version_ | 1783671233726906368 |
---|---|
author | Christodoulou, Ioanna Bourguignon, Tom Li, Xue Patriarche, Gilles Serre, Christian Marlière, Christian Gref, Ruxandra |
author_facet | Christodoulou, Ioanna Bourguignon, Tom Li, Xue Patriarche, Gilles Serre, Christian Marlière, Christian Gref, Ruxandra |
author_sort | Christodoulou, Ioanna |
collection | PubMed |
description | In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications. |
format | Online Article Text |
id | pubmed-8001454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80014542021-03-28 Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy Christodoulou, Ioanna Bourguignon, Tom Li, Xue Patriarche, Gilles Serre, Christian Marlière, Christian Gref, Ruxandra Nanomaterials (Basel) Article In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications. MDPI 2021-03-13 /pmc/articles/PMC8001454/ /pubmed/33805652 http://dx.doi.org/10.3390/nano11030722 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Christodoulou, Ioanna Bourguignon, Tom Li, Xue Patriarche, Gilles Serre, Christian Marlière, Christian Gref, Ruxandra Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy |
title | Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy |
title_full | Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy |
title_fullStr | Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy |
title_full_unstemmed | Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy |
title_short | Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy |
title_sort | degradation mechanism of porous metal-organic frameworks by in situ atomic force microscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001454/ https://www.ncbi.nlm.nih.gov/pubmed/33805652 http://dx.doi.org/10.3390/nano11030722 |
work_keys_str_mv | AT christodoulouioanna degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy AT bourguignontom degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy AT lixue degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy AT patriarchegilles degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy AT serrechristian degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy AT marlierechristian degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy AT grefruxandra degradationmechanismofporousmetalorganicframeworksbyinsituatomicforcemicroscopy |