Cargando…
Towards an Efficient CNN Inference Architecture Enabling In-Sensor Processing †
The astounding development of optical sensing imaging technology, coupled with the impressive improvements in machine learning algorithms, has increased our ability to understand and extract information from scenic events. In most cases, Convolution neural networks (CNNs) are largely adopted to infe...
Autores principales: | Pantho, Md Jubaer Hossain, Bhowmik, Pankaj, Bobda, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001538/ https://www.ncbi.nlm.nih.gov/pubmed/33802235 http://dx.doi.org/10.3390/s21061955 |
Ejemplares similares
-
HARP: Hierarchical Attention Oriented Region-Based Processing for High-Performance Computation in Vision Sensor
por: Bhowmik, Pankaj, et al.
Publicado: (2021) -
Hardware-Efficient Stochastic Binary CNN Architectures for Near-Sensor Computing
por: Parmar, Vivek, et al.
Publicado: (2022) -
Distributed embedded smart cameras: architectures, design and applications
por: Bobda, Christophe, et al.
Publicado: (2014) -
On-sensor binarized CNN inference with dynamic model swapping in pixel processor arrays
por: Liu, Yanan, et al.
Publicado: (2022) -
Orthogonal Printed Microstrip Antenna Arrays for 5G Millimeter-Wave Applications
por: Hossain, Muhammad M., et al.
Publicado: (2021)