Cargando…
Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria
The diversity of lichen-associated bacteria from lichen taxa Cetraria, Cladonia, Megaspora, Pseudephebe, Psoroma, and Sphaerophorus was investigated by sequencing of 16S rRNA gene amplicons. Physiological characteristics of the cultured bacterial isolates were investigated to understand possible rol...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001610/ https://www.ncbi.nlm.nih.gov/pubmed/33804278 http://dx.doi.org/10.3390/microorganisms9030607 |
_version_ | 1783671270534021120 |
---|---|
author | Noh, Hyun-Ju Park, Yerin Hong, Soon Gyu Lee, Yung Mi |
author_facet | Noh, Hyun-Ju Park, Yerin Hong, Soon Gyu Lee, Yung Mi |
author_sort | Noh, Hyun-Ju |
collection | PubMed |
description | The diversity of lichen-associated bacteria from lichen taxa Cetraria, Cladonia, Megaspora, Pseudephebe, Psoroma, and Sphaerophorus was investigated by sequencing of 16S rRNA gene amplicons. Physiological characteristics of the cultured bacterial isolates were investigated to understand possible roles in the lichen ecosystem. Proteobacteria (with a relative abundance of 69.7–96.7%) were mostly represented by the order Rhodospirillales. The 117 retrieved isolates were grouped into 35 phylotypes of the phyla Actinobacteria (27), Bacteroidetes (6), Deinococcus-Thermus (1), and Proteobacteria (Alphaproteobacteria (53), Betaproteobacteria (18), and Gammaproteobacteria (12)). Hydrolysis of macromolecules such as skim milk, polymer, and (hypo)xanthine, solubilization of inorganic phosphate, production of phytohormone indole-3-acetic acid, and fixation of atmospheric nitrogen were observed in different taxa. The potential phototrophy of the strains of the genus Polymorphobacter which were cultivated from a lichen for the first time was revealed by the presence of genes involved in photosynthesis. Altogether, the physiological characteristics of diverse bacterial taxa from Antarctic lichens are considered to imply significant roles of lichen-associated bacteria to allow lichens to be tolerant or competitive in the harsh Antarctic environment. |
format | Online Article Text |
id | pubmed-8001610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80016102021-03-28 Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria Noh, Hyun-Ju Park, Yerin Hong, Soon Gyu Lee, Yung Mi Microorganisms Article The diversity of lichen-associated bacteria from lichen taxa Cetraria, Cladonia, Megaspora, Pseudephebe, Psoroma, and Sphaerophorus was investigated by sequencing of 16S rRNA gene amplicons. Physiological characteristics of the cultured bacterial isolates were investigated to understand possible roles in the lichen ecosystem. Proteobacteria (with a relative abundance of 69.7–96.7%) were mostly represented by the order Rhodospirillales. The 117 retrieved isolates were grouped into 35 phylotypes of the phyla Actinobacteria (27), Bacteroidetes (6), Deinococcus-Thermus (1), and Proteobacteria (Alphaproteobacteria (53), Betaproteobacteria (18), and Gammaproteobacteria (12)). Hydrolysis of macromolecules such as skim milk, polymer, and (hypo)xanthine, solubilization of inorganic phosphate, production of phytohormone indole-3-acetic acid, and fixation of atmospheric nitrogen were observed in different taxa. The potential phototrophy of the strains of the genus Polymorphobacter which were cultivated from a lichen for the first time was revealed by the presence of genes involved in photosynthesis. Altogether, the physiological characteristics of diverse bacterial taxa from Antarctic lichens are considered to imply significant roles of lichen-associated bacteria to allow lichens to be tolerant or competitive in the harsh Antarctic environment. MDPI 2021-03-15 /pmc/articles/PMC8001610/ /pubmed/33804278 http://dx.doi.org/10.3390/microorganisms9030607 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Noh, Hyun-Ju Park, Yerin Hong, Soon Gyu Lee, Yung Mi Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria |
title | Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria |
title_full | Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria |
title_fullStr | Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria |
title_full_unstemmed | Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria |
title_short | Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria |
title_sort | diversity and physiological characteristics of antarctic lichens-associated bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001610/ https://www.ncbi.nlm.nih.gov/pubmed/33804278 http://dx.doi.org/10.3390/microorganisms9030607 |
work_keys_str_mv | AT nohhyunju diversityandphysiologicalcharacteristicsofantarcticlichensassociatedbacteria AT parkyerin diversityandphysiologicalcharacteristicsofantarcticlichensassociatedbacteria AT hongsoongyu diversityandphysiologicalcharacteristicsofantarcticlichensassociatedbacteria AT leeyungmi diversityandphysiologicalcharacteristicsofantarcticlichensassociatedbacteria |