Cargando…
LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching
Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001629/ https://www.ncbi.nlm.nih.gov/pubmed/33802216 http://dx.doi.org/10.3390/s21061950 |
_version_ | 1783671274916020224 |
---|---|
author | Gualda, David Pérez-Rubio, María Carmen Ureña, Jesús Pérez-Bachiller, Sergio Villadangos, José Manuel Hernández, Álvaro García, Juan Jesús Jiménez, Ana |
author_facet | Gualda, David Pérez-Rubio, María Carmen Ureña, Jesús Pérez-Bachiller, Sergio Villadangos, José Manuel Hernández, Álvaro García, Juan Jesús Jiménez, Ana |
author_sort | Gualda, David |
collection | PubMed |
description | Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (U-LPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others. |
format | Online Article Text |
id | pubmed-8001629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80016292021-03-28 LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching Gualda, David Pérez-Rubio, María Carmen Ureña, Jesús Pérez-Bachiller, Sergio Villadangos, José Manuel Hernández, Álvaro García, Juan Jesús Jiménez, Ana Sensors (Basel) Article Indoor positioning remains a challenge and, despite much research and development carried out in the last decade, there is still no standard as with the Global Navigation Satellite Systems (GNSS) outdoors. This paper presents an indoor positioning system called LOCATE-US with adjustable granularity for use with commercial mobile devices, such as smartphones or tablets. LOCATE-US is privacy-oriented and allows every device to compute its own position by fusing ultrasonic, inertial sensor measurements and map information. Ultrasonic Local Positioning Systems (U-LPS) based on encoded signals are placed in critical zones that require an accuracy below a few decimeters to correct the accumulated drift errors of the inertial measurements. These systems are well suited to work at room level as walls confine acoustic waves inside. To avoid audible artifacts, the U-LPS emission is set at 41.67 kHz, and an ultrasonic acquisition module with reduced dimensions is attached to the mobile device through the USB port to capture signals. Processing in the mobile device involves an improved Time Differences of Arrival (TDOA) estimation that is fused with the measurements from an external inertial sensor to obtain real-time location and trajectory display at a 10 Hz rate. Graph-matching has also been included, considering available prior knowledge about the navigation scenario. This kind of device is an adequate platform for Location-Based Services (LBS), enabling applications such as augmented reality, guiding applications, or people monitoring and assistance. The system architecture can easily incorporate new sensors in the future, such as UWB, RFiD or others. MDPI 2021-03-10 /pmc/articles/PMC8001629/ /pubmed/33802216 http://dx.doi.org/10.3390/s21061950 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gualda, David Pérez-Rubio, María Carmen Ureña, Jesús Pérez-Bachiller, Sergio Villadangos, José Manuel Hernández, Álvaro García, Juan Jesús Jiménez, Ana LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching |
title | LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching |
title_full | LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching |
title_fullStr | LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching |
title_full_unstemmed | LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching |
title_short | LOCATE-US: Indoor Positioning for Mobile Devices Using Encoded Ultrasonic Signals, Inertial Sensors and Graph-Matching |
title_sort | locate-us: indoor positioning for mobile devices using encoded ultrasonic signals, inertial sensors and graph-matching |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001629/ https://www.ncbi.nlm.nih.gov/pubmed/33802216 http://dx.doi.org/10.3390/s21061950 |
work_keys_str_mv | AT gualdadavid locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT perezrubiomariacarmen locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT urenajesus locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT perezbachillersergio locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT villadangosjosemanuel locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT hernandezalvaro locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT garciajuanjesus locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching AT jimenezana locateusindoorpositioningformobiledevicesusingencodedultrasonicsignalsinertialsensorsandgraphmatching |