Cargando…

A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography

Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Koudelka, Petr, Kytyr, Daniel, Fila, Tomas, Sleichrt, Jan, Rada, Vaclav, Zlamal, Petr, Benes, Pavel, Bendova, Vendula, Kumpova, Ivana, Vopalensky, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001655/
https://www.ncbi.nlm.nih.gov/pubmed/33799895
http://dx.doi.org/10.3390/ma14061370
_version_ 1783671281227399168
author Koudelka, Petr
Kytyr, Daniel
Fila, Tomas
Sleichrt, Jan
Rada, Vaclav
Zlamal, Petr
Benes, Pavel
Bendova, Vendula
Kumpova, Ivana
Vopalensky, Michal
author_facet Koudelka, Petr
Kytyr, Daniel
Fila, Tomas
Sleichrt, Jan
Rada, Vaclav
Zlamal, Petr
Benes, Pavel
Bendova, Vendula
Kumpova, Ivana
Vopalensky, Michal
author_sort Koudelka, Petr
collection PubMed
description Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a [Formula: see text] effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone.
format Online
Article
Text
id pubmed-8001655
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80016552021-03-28 A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography Koudelka, Petr Kytyr, Daniel Fila, Tomas Sleichrt, Jan Rada, Vaclav Zlamal, Petr Benes, Pavel Bendova, Vendula Kumpova, Ivana Vopalensky, Michal Materials (Basel) Article Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a [Formula: see text] effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone. MDPI 2021-03-11 /pmc/articles/PMC8001655/ /pubmed/33799895 http://dx.doi.org/10.3390/ma14061370 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Koudelka, Petr
Kytyr, Daniel
Fila, Tomas
Sleichrt, Jan
Rada, Vaclav
Zlamal, Petr
Benes, Pavel
Bendova, Vendula
Kumpova, Ivana
Vopalensky, Michal
A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
title A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
title_full A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
title_fullStr A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
title_full_unstemmed A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
title_short A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
title_sort method for evaluation the fatigue microcrack propagation in human cortical bone using differential x-ray computed tomography
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001655/
https://www.ncbi.nlm.nih.gov/pubmed/33799895
http://dx.doi.org/10.3390/ma14061370
work_keys_str_mv AT koudelkapetr amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT kytyrdaniel amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT filatomas amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT sleichrtjan amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT radavaclav amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT zlamalpetr amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT benespavel amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT bendovavendula amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT kumpovaivana amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT vopalenskymichal amethodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT koudelkapetr methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT kytyrdaniel methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT filatomas methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT sleichrtjan methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT radavaclav methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT zlamalpetr methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT benespavel methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT bendovavendula methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT kumpovaivana methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography
AT vopalenskymichal methodforevaluationthefatiguemicrocrackpropagationinhumancorticalboneusingdifferentialxraycomputedtomography