Cargando…

Potential Plant–Plant Communication Induced by Infochemical Methyl Jasmonate in Sorghum (Sorghum bicolor)

Despite the fact that they are sessile organisms, plants actively move their organs and also use these movements to manipulate the surrounding biotic and abiotic environments. Plants maintain communication with neighboring plants, herbivores, and predators through the emission of diverse chemical co...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamashita, Felipe, Rodrigues, Angélica Lino, Rodrigues, Tatiane Maria, Palermo, Fernanda Helena, Baluška, František, de Almeida, Luiz Fernando Rolim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001897/
https://www.ncbi.nlm.nih.gov/pubmed/33806670
http://dx.doi.org/10.3390/plants10030485
Descripción
Sumario:Despite the fact that they are sessile organisms, plants actively move their organs and also use these movements to manipulate the surrounding biotic and abiotic environments. Plants maintain communication with neighboring plants, herbivores, and predators through the emission of diverse chemical compounds by their shoots and roots. These infochemicals modify the environment occupied by plants. Moreover, some infochemicals may induce morphophysiological changes of neighboring plants. We have used methyl-jasmonate (MeJa), a plant natural infochemical, to trigger communication between emitters and receivers Sorghum bicolor plants. The split roots of two plants were allocated to three different pots, with the middle pot containing the roots of both plants. We scored low stomatal conductance (g(S)) and low CO(2) net assimilation (A) using the plants that had contact with the infochemical for the first time. During the second contact, these parameters showed no significant differences, indicating a memory effect. We also observed that the plants that had direct leaf contact with MeJa transmitted sensory information through their roots to neighboring plants. This resulted in higher maximum fluorescence (F(M)) and structural changes in root anatomy. In conclusion, MeJa emerges as possible trigger for communication between neighboring sorghum plants, in response to the environmental challenges.