Cargando…
The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro
Histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic regulators of transcriptional activity representing, an epigenetic modification of Histone H3. Previous reports have suggested that the broad H3K4me3 domain can be considered as an epigenetic signature for tumor-su...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001910/ https://www.ncbi.nlm.nih.gov/pubmed/33799631 http://dx.doi.org/10.3390/cells10030619 |
_version_ | 1783671340168904704 |
---|---|
author | Han, Nan Heublein, Sabine Jeschke, Udo Kuhn, Christina Hester, Anna Czogalla, Bastian Mahner, Sven Rottmann, Miriam Mayr, Doris Schmoeckel, Elisa Trillsch, Fabian |
author_facet | Han, Nan Heublein, Sabine Jeschke, Udo Kuhn, Christina Hester, Anna Czogalla, Bastian Mahner, Sven Rottmann, Miriam Mayr, Doris Schmoeckel, Elisa Trillsch, Fabian |
author_sort | Han, Nan |
collection | PubMed |
description | Histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic regulators of transcriptional activity representing, an epigenetic modification of Histone H3. Previous reports have suggested that the broad H3K4me3 domain can be considered as an epigenetic signature for tumor-suppressor genes in human cells. G-protein-coupled estrogen receptor (GPER), a new membrane-bound estrogen receptor, acts as an inhibitor on cell growth via epigenetic regulation in breast and ovarian cancer cells. This study was conducted to evaluate the relationship of GPER and H3K4me3 in ovarian cancer tissue samples as well as in two different cell lines (Caov3 and Caov4). Silencing of GPER by a specific siRNA and two selective regulators with agonistic (G1) and antagonistic (G15) activity were applied for consecutive in vitro studies to investigate their impacts on tumor cell growth and the changes in phosphorylated ERK1/2 (p-ERK1/2) and H3K4me3. We found a positive correlation between GPER and H3K4me3 expression in ovarian cancer patients. Patients overexpressing GPER as well as H3K4me3 had significantly improved overall survival. Increased H3K4me3 and p-ERK1/2 levels and attenuated cell proliferation and migration were observed in Caov3 and Caov4 cells via activation of GPER by G1. Conversely, antagonizing GPER activity by G15 resulted in opposite effects in the Caov4 cell line. In conclusion, interaction of GPER and H3K4me3 appears to be of prognostic significance for ovarian cancer patients. The results of the in vitro analyses confirm the biological rationale for their interplay and identify GPER agonists, such as G1, as a potential therapeutic approach for future investigations. |
format | Online Article Text |
id | pubmed-8001910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80019102021-03-28 The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro Han, Nan Heublein, Sabine Jeschke, Udo Kuhn, Christina Hester, Anna Czogalla, Bastian Mahner, Sven Rottmann, Miriam Mayr, Doris Schmoeckel, Elisa Trillsch, Fabian Cells Article Histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic regulators of transcriptional activity representing, an epigenetic modification of Histone H3. Previous reports have suggested that the broad H3K4me3 domain can be considered as an epigenetic signature for tumor-suppressor genes in human cells. G-protein-coupled estrogen receptor (GPER), a new membrane-bound estrogen receptor, acts as an inhibitor on cell growth via epigenetic regulation in breast and ovarian cancer cells. This study was conducted to evaluate the relationship of GPER and H3K4me3 in ovarian cancer tissue samples as well as in two different cell lines (Caov3 and Caov4). Silencing of GPER by a specific siRNA and two selective regulators with agonistic (G1) and antagonistic (G15) activity were applied for consecutive in vitro studies to investigate their impacts on tumor cell growth and the changes in phosphorylated ERK1/2 (p-ERK1/2) and H3K4me3. We found a positive correlation between GPER and H3K4me3 expression in ovarian cancer patients. Patients overexpressing GPER as well as H3K4me3 had significantly improved overall survival. Increased H3K4me3 and p-ERK1/2 levels and attenuated cell proliferation and migration were observed in Caov3 and Caov4 cells via activation of GPER by G1. Conversely, antagonizing GPER activity by G15 resulted in opposite effects in the Caov4 cell line. In conclusion, interaction of GPER and H3K4me3 appears to be of prognostic significance for ovarian cancer patients. The results of the in vitro analyses confirm the biological rationale for their interplay and identify GPER agonists, such as G1, as a potential therapeutic approach for future investigations. MDPI 2021-03-11 /pmc/articles/PMC8001910/ /pubmed/33799631 http://dx.doi.org/10.3390/cells10030619 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Han, Nan Heublein, Sabine Jeschke, Udo Kuhn, Christina Hester, Anna Czogalla, Bastian Mahner, Sven Rottmann, Miriam Mayr, Doris Schmoeckel, Elisa Trillsch, Fabian The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro |
title | The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro |
title_full | The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro |
title_fullStr | The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro |
title_full_unstemmed | The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro |
title_short | The G-Protein-Coupled Estrogen Receptor (GPER) Regulates Trimethylation of Histone H3 at Lysine 4 and Represses Migration and Proliferation of Ovarian Cancer Cells In Vitro |
title_sort | g-protein-coupled estrogen receptor (gper) regulates trimethylation of histone h3 at lysine 4 and represses migration and proliferation of ovarian cancer cells in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001910/ https://www.ncbi.nlm.nih.gov/pubmed/33799631 http://dx.doi.org/10.3390/cells10030619 |
work_keys_str_mv | AT hannan thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT heubleinsabine thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT jeschkeudo thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT kuhnchristina thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT hesteranna thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT czogallabastian thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT mahnersven thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT rottmannmiriam thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT mayrdoris thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT schmoeckelelisa thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT trillschfabian thegproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT hannan gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT heubleinsabine gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT jeschkeudo gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT kuhnchristina gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT hesteranna gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT czogallabastian gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT mahnersven gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT rottmannmiriam gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT mayrdoris gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT schmoeckelelisa gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro AT trillschfabian gproteincoupledestrogenreceptorgperregulatestrimethylationofhistoneh3atlysine4andrepressesmigrationandproliferationofovariancancercellsinvitro |