Cargando…
Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual Safety Cages
The use of neural networks and reinforcement learning has become increasingly popular in autonomous vehicle control. However, the opaqueness of the resulting control policies presents a significant barrier to deploying neural network-based control in autonomous vehicles. In this paper, we present a...
Autores principales: | Kuutti, Sampo, Bowden, Richard, Fallah, Saber |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001915/ https://www.ncbi.nlm.nih.gov/pubmed/33805601 http://dx.doi.org/10.3390/s21062032 |
Ejemplares similares
-
Road-Aware Trajectory Prediction for Autonomous Driving on Highways
por: Yoon, Yookhyun, et al.
Publicado: (2020) -
Weakly Supervised Crop Area Segmentation for an Autonomous Combine Harvester
por: Kim, Wan-Soo, et al.
Publicado: (2021) -
Safety and health of professional drivers who drive on Brazilian highways
por: Narciso, Fernanda Veruska, et al.
Publicado: (2017) -
Who drives the ciliary highway?
por: Malicki, Jarema
Publicado: (2012) -
Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator
por: Gutiérrez-Moreno, Rodrigo, et al.
Publicado: (2022)