Cargando…
Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core–Shell Plasmonic Metastructures
The substitution of time- and labor-intensive empirical research as well as slow finite difference time domain (FDTD) simulations with revolutionary techniques such as artificial neural network (ANN)-based predictive modeling is the next trend in the field of nanophotonics. In this work, we demonstr...
Autores principales: | Vahidzadeh, Ehsan, Shankar, Karthik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001937/ https://www.ncbi.nlm.nih.gov/pubmed/33806266 http://dx.doi.org/10.3390/nano11030633 |
Ejemplares similares
-
Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures
por: Fernandes, Joshua, et al.
Publicado: (2021) -
Highly Sensitive Plasmonic Biosensors with Precise Phase Singularity Coupling on the Metastructures
por: Youssef, Joelle, et al.
Publicado: (2022) -
Core–Shell Plasmonic Nanohelices
por: Kosters, Dolfine, et al.
Publicado: (2017) -
All-passive nonreciprocal metastructure
por: Mahmoud, Ahmed M., et al.
Publicado: (2015) -
Review: tunable nanophotonic metastructures
por: Ling, Yi-Chun, et al.
Publicado: (2023)