Cargando…

Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying

Global Navigation Satellite Systems (GNSS) have revolutionized land surveying, by determining position coordinates with centimeter-level accuracy in real-time or up to sub-millimeter accuracy in post-processing solutions. Although low-cost single-frequency receivers do not meet the accuracy requirem...

Descripción completa

Detalles Bibliográficos
Autores principales: Wielgocka, Natalia, Hadas, Tomasz, Kaczmarek, Adrian, Marut, Grzegorz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8001986/
https://www.ncbi.nlm.nih.gov/pubmed/33799512
http://dx.doi.org/10.3390/s21061956
Descripción
Sumario:Global Navigation Satellite Systems (GNSS) have revolutionized land surveying, by determining position coordinates with centimeter-level accuracy in real-time or up to sub-millimeter accuracy in post-processing solutions. Although low-cost single-frequency receivers do not meet the accuracy requirements of many surveying applications, multi-frequency hardware is expected to overcome the major issues. Therefore, this paper is aimed at investigating the performance of a u-blox ZED-F9P receiver, connected to a u-blox ANN-MB-00-00 antenna, during multiple field experiments. Satisfactory signal acquisition was noticed but it resulted as >7 dB Hz weaker than with a geodetic-grade receiver, especially for low-elevation mask signals. In the static mode, the ambiguity fixing rate reaches 80%, and a horizontal accuracy of few centimeters was achieved during an hour-long session. Similar accuracy was achieved with the Precise Point Positioning (PPP) if a session is extended to at least 2.5 h. Real-Time Kinematic (RTK) and Network RTK measurements achieved a horizontal accuracy better than 5 cm and a sub-decimeter vertical accuracy. If a base station constituted by a low-cost receiver is used, the horizontal accuracy degrades by a factor of two and such a setup may lead to an inaccurate height determination under dynamic surveying conditions, e.g., rotating antenna of the mobile receiver.