Cargando…
Graph Based Multi-Layer K-Means++ (G-MLKM) for Sensory Pattern Analysis in Constrained Spaces
In this paper, we focus on developing a novel unsupervised machine learning algorithm, named graph based multi-layer k-means++ (G-MLKM), to solve the data-target association problem when targets move on a constrained space and minimal information of the targets can be obtained by sensors. Instead of...
Autores principales: | Tao, Feng, Suresh, Rengan, Votion, Johnathan, Cao, Yongcan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002009/ https://www.ncbi.nlm.nih.gov/pubmed/33809434 http://dx.doi.org/10.3390/s21062069 |
Ejemplares similares
-
Search graph structure and its implications for multi-graph constrained routing and scheduling problems
por: Weiszer, Michal, et al.
Publicado: (2022) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018) -
The Affective Meaning of Words is Constrained by the Conceptual Meaning
por: Hu, Zhiguo, et al.
Publicado: (2019) -
Reordering for Improved Constrained Reconstruction from Undersampled k-Space Data
por: Adluru, Ganesh, et al.
Publicado: (2008) -
Constraining neutrino masses with clustering in harmonic space via multi-tracing
por: Tanidis, Konstantinos
Publicado: (2021)