Cargando…
Functionalized Biodegradable Polymers via Termination of Ring-Opening Polymerization by Acyl Chlorides
Aliphatic polyesters are an important class of polymeric materials for biomedical applications due to their versatile and tunable chemistry, biocompatibility and biodegradability. A capability of direct bonding with biomedically significant molecules, provided by the presence of the reactive end fun...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002085/ https://www.ncbi.nlm.nih.gov/pubmed/33799797 http://dx.doi.org/10.3390/polym13060868 |
Sumario: | Aliphatic polyesters are an important class of polymeric materials for biomedical applications due to their versatile and tunable chemistry, biocompatibility and biodegradability. A capability of direct bonding with biomedically significant molecules, provided by the presence of the reactive end functional groups (FGs), is highly desirable for prospective polymers. Among FGs, N-hydroxysuccinimidyl activated ester group (NHS) and maleimide fragment (MI) provide efficient covalent bonding with –NH– and –SH containing compounds. In our study, we found that NHS- and MI-derived acyl chlorides efficiently terminate living ring-opening polymerization of ε-caprolactone, L-lactide, ethyl ethylene phosphonate and ethyl ethylene phosphate, catalyzed by 2,6-di-tert-butyl-4-methylphenoxy magnesium complex, with a formation of NHS- and MI-functionalized polymers at a high yields. Reactivity of these polymers towards amine- and thiol-containing model substrates in organic and aqueous media was also studied. |
---|