Cargando…

Functionalized Biodegradable Polymers via Termination of Ring-Opening Polymerization by Acyl Chlorides

Aliphatic polyesters are an important class of polymeric materials for biomedical applications due to their versatile and tunable chemistry, biocompatibility and biodegradability. A capability of direct bonding with biomedically significant molecules, provided by the presence of the reactive end fun...

Descripción completa

Detalles Bibliográficos
Autores principales: Nifant’ev, Ilya, Shlyakhtin, Andrey, Bagrov, Vladimir, Shaputkin, Evgeny, Tavtorkin, Alexander, Ivchenko, Pavel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002085/
https://www.ncbi.nlm.nih.gov/pubmed/33799797
http://dx.doi.org/10.3390/polym13060868
Descripción
Sumario:Aliphatic polyesters are an important class of polymeric materials for biomedical applications due to their versatile and tunable chemistry, biocompatibility and biodegradability. A capability of direct bonding with biomedically significant molecules, provided by the presence of the reactive end functional groups (FGs), is highly desirable for prospective polymers. Among FGs, N-hydroxysuccinimidyl activated ester group (NHS) and maleimide fragment (MI) provide efficient covalent bonding with –NH– and –SH containing compounds. In our study, we found that NHS- and MI-derived acyl chlorides efficiently terminate living ring-opening polymerization of ε-caprolactone, L-lactide, ethyl ethylene phosphonate and ethyl ethylene phosphate, catalyzed by 2,6-di-tert-butyl-4-methylphenoxy magnesium complex, with a formation of NHS- and MI-functionalized polymers at a high yields. Reactivity of these polymers towards amine- and thiol-containing model substrates in organic and aqueous media was also studied.