Cargando…
Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients
Manual segmentation of muscle and adipose compartments from computed tomography (CT) axial images is a potential bottleneck in early rapid detection and quantification of sarcopenia. A prototype deep learning neural network was trained on a multi-center collection of 3413 abdominal cancer surgery su...
Autores principales: | Ackermans, Leanne L. G. C., Volmer, Leroy, Wee, Leonard, Brecheisen, Ralph, Sánchez-González, Patricia, Seiffert, Alexander P., Gómez, Enrique J., Dekker, Andre, Ten Bosch, Jan A., Olde Damink, Steven M. W., Blokhuis, Taco J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002279/ https://www.ncbi.nlm.nih.gov/pubmed/33809710 http://dx.doi.org/10.3390/s21062083 |
Ejemplares similares
-
Identifying radiomics signatures in body composition imaging for the prediction of outcome following pancreatic cancer resection
por: van der Kroft, Gregory, et al.
Publicado: (2023) -
MAS: Standalone Microwave Resonator to Assess Muscle Quality
por: Mattsson, Viktor, et al.
Publicado: (2021) -
Polytrauma
por: Guerado, Enrique
Publicado: (2015) -
Penetrating abdominal injury in a polytrauma patient: Anaesthetic challenges faced
por: Tantry, Thrivikrama Padur, et al.
Publicado: (2011) -
Raised intracranial pressure following abdominal closure in a polytrauma patient
por: Hendrickson, Susan, et al.
Publicado: (2015)